首页> 外文期刊>IEEE Geoscience and Remote Sensing Letters >Constrained Nonnegative Tensor Factorization for Spectral Unmixing of Hyperspectral Images: A Case Study of Urban Impervious Surface Extraction
【24h】

Constrained Nonnegative Tensor Factorization for Spectral Unmixing of Hyperspectral Images: A Case Study of Urban Impervious Surface Extraction

机译:高光谱图像光谱解体的约束非负张量分解:城市防渗表面提取的案例研究

获取原文
获取原文并翻译 | 示例

摘要

In recent years, a new genre of hyperspectral unmixing methods based on nonnegative matrix factorization (NMF) have been proposed. Unlike traditional spectral unmixing methods, the NMF-based hyperspectral unmixing methods no longer depend on pure pixels in the original image. The NMF is based on linear algebra, which requires that the hyperspectral data cube is converted from 3-D cube to a 2-D matrix. Due to this conversion, the spatial information in the relative positions of the pixels is lost. With the emergence of multilinear algebra, the tensorial representation of hyperspectral imagery that preserves spectral and spatial information has become popular. The tensor-based spectral unmixing was first realized in 2017 using the matrix-vector nonnegative tensor factorization (MVNTF) decomposition. Using the construction of MVNTF spectral unmixing, this letter proposes to integrate three additional constraints (sparseness, volume, and nonlinearity) to the cost function. As we show in this letter, we found that the three constraints greatly improved the impervious surface area fraction/classification results. The constraints also shortened the processing time.
机译:近年来,已经提出了一种基于非负矩阵分解(NMF)的新的高光谱解混方法。与传统的光谱解密方法不同,基于NMF的超光线解密方法不再依赖于原始图像中的纯片像素。 NMF基于线性代数,这要求高光谱数据立方体从3-D立方体转换为2-D矩阵。由于这种转换,像素的相对位置的空间信息丢失。随着多线性代数的出现,高光谱图像的张力表示,其保留频谱和空间信息已经变得流行。首先在2017年使用矩阵矢量非负张量分解(MVNTF)分解首次实现了张光谱的光谱。使用MVNTF光谱解密的构造,这封信建议将三个附加约束(稀疏性,体积和非线性)集成到成本函数。正如我们在这封信中所展示的那样,我们发现三个约束大大改善了不透水的表面积分数/分类结果。约束还缩短了处理时间。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号