首页> 外文期刊>IEEE Geoscience and Remote Sensing Letters >Sen4Rice: A Processing Chain for Differentiating Early and Late Transplanted Rice Using Time-Series Sentinel-1 SAR Data With Google Earth Engine
【24h】

Sen4Rice: A Processing Chain for Differentiating Early and Late Transplanted Rice Using Time-Series Sentinel-1 SAR Data With Google Earth Engine

机译:Sen4Rice:使用时间序列Sentinel-1 SAR数据和Google Earth Engine区分早稻和晚稻的处理链

获取原文
获取原文并翻译 | 示例

摘要

Accurate spatio-temporal information about rice growth is an important factor for agronomic management and regional grain yield estimation. In this letter, a unified framework for monitoring and mapping of rice using dense time-series of Sentinel-1 synthetic aperture radar (SAR) images is proposed. A processing chain for such dense time-series Sentinel-1 images is developed with the Google Earth Engine’s cloud computing platform. A dense time-series analysis of backscatter response of rice with different management practices is analyzed. Subsequently, the early and late transplanted rice is classified using a clustering algorithm within this platform. The proposed approach is used to monitor different cultivars of rice in three districts in the state of West Bengal, which is one of the major rice growing regions in India. The classification accuracy is assessed across 150 validation points spanning multiple blocks for the 2017 monsoon season. The Sentinel-1 SAR images acquired up to the early vegetative stage for rice have provided satisfactory classification accuracy with an overall accuracy >85% with$kappa sim 0.86$across different management practices throughout the region.
机译:有关水稻生长的准确时空信息是进行农艺管理和估算区域粮食产量的重要因素。在这封信中,提出了使用Sentinel-1合成孔径雷达(SAR)图像的密集时间序列进行水稻监测和制图的统一框架。利用Google Earth Engine的云计算平台开发了这种密集的Sentinel-1时间序列图像的处理链。分析了不同管理方式下水稻反向散射响应的密集时间序列分析。随后,在此平台内使用聚类算法对早稻和晚稻进行了分类。拟议的方法用于监测西孟加拉邦三个地区的不同水稻品种,西孟加拉邦是印度主要的水稻种植区之一。在2017年季风季节的150个验证点中,跨多个区块的分级准确性进行了评估。到水稻早期营养阶段为止采集的Sentinel-1 SAR图像已经提供了令人满意的分类精度,总体精度> 85%,其中 n $ kappa sim 0.86 $ 横跨整个区域的不同管理实践。

著录项

相似文献

  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号