首页> 外文期刊>IEEE computer architecture letters >Improving GPU Multitasking Efficiency Using Dynamic Resource Sharing
【24h】

Improving GPU Multitasking Efficiency Using Dynamic Resource Sharing

机译:使用动态资源共享提高GPU多任务处理效率

获取原文
获取原文并翻译 | 示例

摘要

As GPUs have become essential components for embedded computing systems, a shared GPU with multiple CPU cores needs to efficiently support concurrent execution of multiple different applications. Spatial multitasking, which assigns a different amount of streaming multiprocessors (SMs) to multiple applications, is one of the most common solutions for this. However, this is not a panacea for maximizing total resource utilization. It is because an SM consists of many different sub-resources such as caches, execution units and scheduling units, and the requirements of the sub-resources per kernel are not well matched to their fixed sizes inside an SM. To solve the resource requirement mismatch problem, this paper proposes a GPU Weaver, a dynamic sub-resource management system of multitasking GPUs. GPU Weaver can maximize sub-resource utilization through a shared resource controller (SRC) that is added between neighboring SMs. The SRC dynamically identifies idle sub-resources of an SM and allows them to be used by the neighboring SM when possible. Experiments show that the combination of multiple sub-resource borrowing techniques enhances the total throughput by up to 26 and 9.5 percent on average over the baseline spatial multitasking GPU.
机译:由于GPU已成为嵌入式计算系统的必要组件,因此具有多个CPU内核的共享GPU需要有效地支持多个不同应用程序的并发执行。空间多任务处理是最常见的解决方案之一,它可以将不同数量的流式多处理器(SM)分配给多个应用程序。但是,这不是使总资源利用率最大化的灵丹妙药。这是因为SM由许多不同的子资源组成,例如缓存,执行单元和调度单元,并且每个内核对子资源的要求与其在SM中的固定大小不能很好地匹配。为了解决资源需求不匹配的问题,提出了一种GPU Weaver,一种多任务GPU的动态子资源管理系统。 GPU Weaver可以通过在相邻SM之间添加的共享资源控制器(SRC)最大限度地提高子资源利用率。 SRC动态识别SM的空闲子资源,并在可能时允许相邻SM使用它们。实验表明,与基准空间多任务GPU相比,多种子资源借用技术的组合平均将总吞吐量平均提高了26%和9.5%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号