首页> 外文期刊>IEEE/ACM Transactions on Networking >SHRiNK: a method for enabling scaleable performance prediction and efficient network simulation
【24h】

SHRiNK: a method for enabling scaleable performance prediction and efficient network simulation

机译:SHRiNK:一种实现可扩展的性能预测和有效的网络仿真的方法

获取原文
获取原文并翻译 | 示例

摘要

As the Internet grows, it is becoming increasingly difficult to collect performance measurements, to monitor its state, and to perform simulations efficiently. This is because the size and the heterogeneity of the Internet makes it time-consuming and difficult to devise traffic models and analytic tools which would allow us to work with summary statistics. We explore a method to side step these problems by combining sampling, modeling, and simulation. Our hypothesis is this: if we take a sample of the input traffic and feed it into a suitably scaled version of the system, we can extrapolate from the performance of the scaled system to that of the original. Our main findings are as follows. When we scale an IP network which is shared by short- and long-lived TCP-like and UDP flows and which is controlled by a variety of active queue management schemes, then performance measures such as queueing delay and drop probability are left virtually unchanged. We show this in theory and in simulations. This makes it possible to capture the performance of large networks quite faithfully using smaller scale replicas.
机译:随着Internet的发展,收集性能度量,监视其状态以及有效执行仿真变得越来越困难。这是因为Internet的规模和异构性使其既费时又难以设计流量模型和分析工具,从而使我们能够使用汇总统计信息。我们探索了一种通过结合采样,建模和仿真来避免这些问题的方法。我们的假设是这样的:如果我们对输入流量进行采样,并将其输入到系统的适当缩放版本中,则可以从缩放系统的性能推断出原始系统的性能。我们的主要发现如下。当我们扩展一个由短期和长期类似TCP和UDP流共享的IP网络并由各种活动队列管理方案控制时,诸如排队延迟和丢弃概率之类的性能指标几乎保持不变。我们在理论和模拟中都展示了这一点。这样就可以使用较小规模的副本忠实地捕获大型网络的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号