首页> 外文期刊>IEEE/ACM Transactions on Networking >On the complexity of and algorithms for finding the shortest path with a disjoint counterpart
【24h】

On the complexity of and algorithms for finding the shortest path with a disjoint counterpart

机译:寻找不相交对应物的最短路径的复杂度和算法

获取原文
获取原文并翻译 | 示例

摘要

Finding a disjoint path pair is an important component in survivable networks. Since the traffic is carried on the active (working) path most of the time, it is useful to find a disjoint path pair such that the length of the shorter path (to be used as the active path) is minimized. In this paper, we first address such a Min-Min problem. We prove that this problem is NP-complete in either single link cost (e.g., dedicated backup bandwidth) or dual link cost (e.g., shared backup bandwidth) networks. In addition, it is NP-hard to obtain a K-approximation to the optimal solution for any K>1. Our proof is extended to another open question regarding the computational complexity of a restricted version of the Min-Sum problem in an undirected network with ordered dual cost links (called the MSOD problem). To solve the Min-Min problem efficiently, we introduce a novel concept called conflicting link set which provides insights into the so-called trap problem, and develop a divide-and-conquer strategy. The result is an effective heuristic for the Min-Min problem called COnflicting Link Exclusion (COLE), which can outperform other approaches in terms of both the optimality and running time. We also apply COLE to the MSOD problem to efficiently provide shared path protection and conduct comprehensive performance evaluation as well as comparison of various schemes for shared path protection. We show that COLE not only processes connection requests much faster than existing integer linear programming (ILP)-based approaches but also achieves a good balance among the active path length, bandwidth efficiency, and recovery time.
机译:查找不相交的路径对是可生存网络中的重要组成部分。由于流量大部分时间都是在活动(工作)路径上承载的,因此找到不相交的路径对以使较短路径(用作活动路径)的长度最小化是很有用的。在本文中,我们首先解决这样的最小-最小问题。我们证明此问题在单链路成本(例如专用备份带宽)或双链路成本(例如共享备份带宽)网络中都是NP完全的。另外,对于任何K> 1,要获得与最佳解的K近似值都是NP难的。我们的证明扩展到另一个未解决的问题,即关于有序双成本链接的无向网络中最小和问题的受限版本的计算复杂性(称为MSOD问题)。为了有效地解决Min-Min问题,我们引入了一个称为冲突链接集的新颖概念,该概念可以洞悉所谓的陷阱问题,并制定分而治之的策略。结果是对称为“冲突链接排除”(COLE)的Min-Min问题的有效启发式方法,该方法在优化性和运行时间方面都可以胜过其他方法。我们还将COLE应用于MSOD问题,以有效地提供共享路径保护并进行全面的性能评估,以及比较各种用于共享路径保护的方案。我们证明,COLE不仅比现有的基于整数线性编程(ILP)的方法处理连接请求要快得多,而且还可以在有效路径长度,带宽效率和恢复时间之间达到良好的平衡。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号