首页> 外文期刊>IEEE/ACM Transactions on Networking >ARCH-Based Traffic Forecasting and Dynamic Bandwidth Provisioning for Periodically Measured Nonstationary Traffic
【24h】

ARCH-Based Traffic Forecasting and Dynamic Bandwidth Provisioning for Periodically Measured Nonstationary Traffic

机译:基于ARCH的定期测量非平稳流量的流量预测和动态带宽设置

获取原文
获取原文并翻译 | 示例

摘要

Network providers are often interested in providing dynamically provisioned bandwidth to customers based on periodically measured nonstationary traffic while meeting service level agreements (SLAs). In this paper, we propose a dynamic bandwidth provisioning framework for such a situation. In order to have a good sense of nonstationary periodically measured traffic data, measurements were first collected over a period of three weeks excluding the weekends in three different months from an Internet access link. To characterize the traffic data rate dynamics of these data sets, we develop a seasonal AutoRegressive Conditional Heteroskedasticity (ARCH) based model with the innovation process (disturbances) generalized to the class of heavy-tailed distributions. We observed a strong empirical evidence for the proposed model. Based on the ARCH-model, we present a probability-hop forecasting algorithm, an augmented forecast mechanism using the confidence-bounds of the mean forecast value from the conditional forecast distribution. For bandwidth estimation, we present different bandwidth provisioning schemes that allocate or deallocate the bandwidth based on the traffic forecast generated by our forecasting algorithm. These provisioning schemes are developed to allow trade off between the underprovisioning and the utilization, while addressing the overhead cost of updating bandwidth. Based on extensive studies with three different data sets, we have found that our approach provides a robust dynamic bandwidth provisioning framework for real-world periodically measured nonstationary traffic.
机译:网络提供商通常有兴趣在满足服务水平协议(SLA)的基础上,根据定期测量的非固定流量向客户提供动态预配置的带宽。在本文中,我们提出了一种针对这种情况的动态带宽供应框架。为了对不稳定的定期测量的流量数据有良好的感觉,首先在三个星期的时间内(不包括三个不同月份中的周末)从Internet访问链接收集测量结果。为了表征这些数据集的交通数据速率动态,我们开发了一个基于季节自回归条件异方差(ARCH)的模型,并将创新过程(干扰)推广到了重尾分布类别。我们观察到了强烈的经验证据,对提出的模型。基于ARCH模型,我们提出了一种概率跳跃预测算法,这是一种使用来自条件预测分布的平均预测值的置信区间的增强预测机制。对于带宽估计,我们提出了不同的带宽供应方案,这些方案根据预测算法生成的流量预测来分配或取消分配带宽。开发这些配置方案是为了在配置不足和利用率之间进行权衡,同时解决更新带宽的开销成本。基于对三个不同数据集的广泛研究,我们发现我们的方法为现实世界中定期测量的非平稳流量提供了可靠的动态带宽配置框架。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号