首页> 外文期刊>IEEE/ACM Transactions on Networking >Statistical Techniques for Detecting Traffic Anomalies Through Packet Header Data
【24h】

Statistical Techniques for Detecting Traffic Anomalies Through Packet Header Data

机译:通过数据包头数据检测流量异常的统计技术

获取原文
获取原文并翻译 | 示例

摘要

This paper proposes a traffic anomaly detector, operated in postmortem and in real-time, by passively monitoring packet headers of traffic. The frequent attacks on network infrastructure, using various forms of denial of service attacks, have led to an increased need for developing techniques for analyzing network traffic. If efficient analysis tools were available, it could become possible to detect the attacks, anomalies and to take action to contain the attacks appropriately before they have had time to propagate across the network. In this paper, we suggest a technique for traffic anomaly detection based on analyzing correlation of destination IP addresses in outgoing traffic at an egress router. This address correlation data are transformed using discrete wavelet transform for effective detection of anomalies through statistical analysis. Results from trace-driven evaluation suggest that proposed approach could provide an effective means of detecting anomalies close to the source. We also present a multidimensional indicator using the correlation of port numbers and the number of flows as a means of detecting anomalies.
机译:本文提出了一种流量异常检测器,通过被动监控流量的数据包报头,可以事后实时地进行操作。使用各种形式的拒绝服务攻击的对网络基础结构的频繁攻击导致对开发用于分析网络流量的技术的需求增加。如果可以使用有效的分析工具,则有可能在攻击没有时间传播到网络之前,检测攻击,异常情况并采取措施适当地遏制攻击。在本文中,我们提出了一种在分析出口路由器上传出流量中目标IP地址相关性的基础上,进行流量异常检测的技术。使用离散小波变换对该地址相关数据进行变换,以通过统计分析有效检测异常。跟踪驱动评估的结果表明,所提出的方法可以提供一种有效的手段来检测源头附近的异常。我们还提出了一种多维指标,它使用端口号和流量的相关性作为检测异常的一种手段。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号