首页> 外文期刊>IEEE/ACM Transactions on Networking >A Superlinearly and Globally Convergent Algorithm for Power Control and Resource Allocation With General Interference Functions
【24h】

A Superlinearly and Globally Convergent Algorithm for Power Control and Resource Allocation With General Interference Functions

机译:具有通用干扰函数的功率控制和资源分配的超线性全局收敛算法

获取原文
获取原文并翻译 | 示例

摘要

In wireless networks, users are typically coupled by interference. Hence, resource allocation can strongly depend on receive strategies, such as beamforming, CDMA receivers, etc. We study the problem of minimizing the total transmission power while maintaining individual quality-of-service (QoS) values for all users. This problem can be solved by the fixed-point iteration proposed by Yates (1995) as well as by a recently proposed matrix-based iteration (Schubert and Boche, 2007). It was observed by numerical simulations that the matrix-based iteration has interesting numerical properties, and achieves the global optimum in only a few steps. However, an analytical investigation of the convergence behavior has been an open problem so far. In this paper, we show that the matrix-based iteration can be reformulated as a Newton-type iteration of a convex function, which is not guaranteed to be continuously differentiable. Such a behavior can be caused by ambiguous representations of the interference functions, depending on the choice of the receive strategy. Nevertheless, superlinear convergence can be shown by exploiting the special structure of the problem. Namely, the function is convex, locally Lipschitz continuous, and an invertible directional derivative exists for all points of interest.
机译:在无线网络中,用户通常通过干扰耦合。因此,资源分配在很大程度上取决于接收策略,例如波束成形,CDMA接收器等。我们研究了在保持所有用户各自的服务质量(QoS)值的同时最小化总传输功率的问题。这个问题可以通过Yates(1995)提出的定点迭代以及最近提出的基于矩阵的迭代(Schubert and Boche,2007)来解决。通过数值模拟观察到,基于矩阵的迭代具有有趣的数值属性,并且仅需几个步骤即可实现全局最优。但是,到目前为止,对收敛行为的分析研究一直是一个悬而未决的问题。在本文中,我们表明基于矩阵的迭代可以重新构造为凸函数的牛顿型迭代,但不能保证连续可微。取决于接收策略的选择,这种行为可能是由干扰函数的模棱两可的表示引起的。但是,通过利用问题的特殊结构可以显示超线性收敛。即,该函数是凸的,局部Lipschitz是连续的,并且对于所有关注点都存在可逆的方向导数。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号