首页> 外文期刊>Networking, IEEE/ACM Transactions on >A Large-Scale Hidden Semi-Markov Model for Anomaly Detection on User Browsing Behaviors
【24h】

A Large-Scale Hidden Semi-Markov Model for Anomaly Detection on User Browsing Behaviors

机译:用于用户浏览行为异常检测的大规模隐藏半马尔可夫模型

获取原文
获取原文并翻译 | 示例

摘要

Many methods designed to create defenses against distributed denial of service (DDoS) attacks are focused on the IP and TCP layers instead of the high layer. They are not suitable for handling the new type of attack which is based on the application layer. In this paper, we introduce a new scheme to achieve early attack detection and filtering for the application-layer-based DDoS attack. An extended hidden semi-Markov model is proposed to describe the browsing behaviors of web surfers. In order to reduce the computational amount introduced by the model's large state space, a novel forward algorithm is derived for the online implementation of the model based on the M-algorithm. Entropy of the user's HTTP request sequence fitting to the model is used as a criterion to measure the user's normality. Finally, experiments are conducted to validate our model and algorithm.
机译:设计用来防御分布式拒绝服务(DDoS)攻击的许多方法都集中在IP和TCP层而不是高层上。它们不适合处理基于应用程序层的新型攻击。在本文中,我们介绍了一种新的方案,可以对基于应用程序层的DDoS攻击进行早期攻击检测和过滤。提出了一种扩展的隐式半马尔可夫模型来描述网络冲浪者的浏览行为。为了减少模型的大状态空间引入的计算量,提出了一种新颖的基于M算法的在线实现模型在线实现的算法。符合模型的用户HTTP请求序列的熵用作衡量用户正常性的标准。最后,进行实验以验证我们的模型和算法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号