首页> 外文期刊>Networking, IEEE/ACM Transactions on >Per-Flow Traffic Measurement Through Randomized Counter Sharing
【24h】

Per-Flow Traffic Measurement Through Randomized Counter Sharing

机译:通过随机计数器共享进行按流流量测量

获取原文
获取原文并翻译 | 示例

摘要

Traffic measurement provides critical real-world data for service providers and network administrators to perform capacity planning, accounting and billing, anomaly detection, and service provision. One of the greatest challenges in designing an online measurement module is to minimize the per-packet processing time in order to keep up with the line speed of the modern routers. To meet this challenge, we should minimize the number of memory accesses per packet and implement the measurement module in the on-die SRAM. The small size of SRAM requires extremely compact data structures to be designed for storing per-flow information. The best existing work, called counter braids, requires more than 4 bits per flow and performs six or more memory accesses per packet. In this paper, we design a fast and compact measurement function that estimates the sizes of all flows. It achieves the optimal processing speed: two memory accesses per packet. In addition, it provides reasonable measurement accuracy in a tight space where the counter braids no longer work. Our design is based on a new data encoding/decoding scheme, called randomized counter sharing. This scheme allows us to mix per-flow information together in storage for compactness and, at the decoding time, separate the information of each flow through statistical removal of the error introduced during information mixing from other flows. The effectiveness of our online per-flow measurement approach is analyzed and confirmed through extensive experiments based on real network traffic traces. We also propose several methods to increase the estimation range of flow sizes.
机译:流量测量可为服务提供商和网络管理员提供重要的实际数据,以执行容量规划,计费和计费,异常检测和服务提供。设计在线测量模块的最大挑战之一是最小化每个数据包的处理时间,以跟上现代路由器的线路速度。为了应对这一挑战,我们应该将每个数据包的内存访问数量减至最少,并在片上SRAM中实现测量模块。 SRAM的体积小,需要设计极其紧凑的数据结构来存储每流信息。现有最好的工作称为反编织,每个流需要4位以上的数据,并且每个数据包执行六次或更多次内存访问。在本文中,我们设计了一种快速而紧凑的测量功能,可以估算所有流量的大小。它实现了最佳的处理速度:每个数据包两次内存访问。此外,它在反编织层不再工作的狭窄空间中提供了合理的测量精度。我们的设计基于一种称为随机计数器共享的新数据编码/解码方案。这种方案使我们能够将每个流信息混合在一起存储在紧凑性中,并且在解码时,通过统计去除在信息混合过程中引入的错误与其他流,将每个流的信息分开。通过基于真实网络流量跟踪的大量实验,分析和确认了我们的在线每流测量方法的有效性。我们还提出了几种增加流量估算范围的方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号