首页> 外文期刊>Networking, IEEE/ACM Transactions on >Detecting Algorithmically Generated Domain-Flux Attacks With DNS Traffic Analysis
【24h】

Detecting Algorithmically Generated Domain-Flux Attacks With DNS Traffic Analysis

机译:使用DNS流量分析检测算法生成的域通量攻击

获取原文
获取原文并翻译 | 示例

摘要

Recent botnets such as Conficker, Kraken, and Torpig have used DNS-based “domain fluxing” for command-and-control, where each Bot queries for existence of a series of domain names and the owner has to register only one such domain name. In this paper, we develop a methodology to detect such “domain fluxes” in DNS traffic by looking for patterns inherent to domain names that are generated algorithmically, in contrast to those generated by humans. In particular, we look at distribution of alphanumeric characters as well as bigrams in all domains that are mapped to the same set of IP addresses. We present and compare the performance of several distance metrics, including K–L distance, Edit distance, and Jaccard measure. We train by using a good dataset of domains obtained via a crawl of domains mapped to all IPv4 address space and modeling bad datasets based on behaviors seen so far and expected. We also apply our methodology to packet traces collected at a Tier-1 ISP and show we can automatically detect domain fluxing as used by Conficker botnet with minimal false positives, in addition to discovering a new botnet within the ISP trace. We also analyze a campus DNS trace to detect another unknown botnet exhibiting advanced domain-name generation technique.
机译:最近的僵尸网络(例如Conficker,Kraken和Torpig)已将基于DNS的“域通量”用于命令和控制,其中每个Bot都查询一系列域名的存在,而所有者仅需注册一个这样的域名。在本文中,我们开发了一种方法,通过查找算法生成的域名固有模式(与人类生成的模式相反)来检测DNS流量中的此类“域通量”。特别是,我们研究了在映射到同一组IP地址的所有域中的字母数字字符和二元组的分布。我们介绍并比较了几种距离度量的性能,包括K–L距离,编辑距离和Jaccard度量。我们通过使用良好的域数据集进行训练,这些数据集是通过对映射到所有IPv4地址空间的域进行爬网而获得的,并根据到目前为止和预期的行为对不良的数据集进行了建模。我们还将我们的方法应用于在第1层ISP处收集的数据包跟踪中,并表明除了在ISP跟踪中发现新的僵尸网络之外,我们还能自动检测Conficker僵尸网络所使用的域通量,且误报率极低。我们还分析了校园DNS跟踪,以检测出另一个展示了高级域名生成技术的未知僵尸网络。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号