首页> 外文期刊>Networking, IEEE/ACM Transactions on >System-Level Optimization in Wireless Networks: Managing Interference and Uncertainty via Robust Optimization
【24h】

System-Level Optimization in Wireless Networks: Managing Interference and Uncertainty via Robust Optimization

机译:无线网络中的系统级优化:通过稳健的优化管理干扰和不确定性

获取原文
获取原文并翻译 | 示例

摘要

We consider a robust-optimization-driven system-level approach to interference management in a cellular broadband system operating in an interference-limited and highly dynamic regime. Here, base stations in neighboring cells (partially) coordinate their transmission schedules in an attempt to avoid simultaneous max-power transmission to their mutual cell edge. Limits on communication overhead and use of the backhaul require base station coordination to occur at a slower timescale than the customer arrival process. The central challenge is to properly structure coordination decisions at the slow timescale, as these subsequently restrict the actions of each base station until the next coordination period. Moreover, because coordination occurs at the slower timescale, the statistics of the arriving customers, e.g., the load, are typically only approximately known-thus, this coordination must be done with only approximate knowledge of statistics. We show that performance of existing approaches that assume exact knowledge of these statistics can degrade rapidly as the uncertainty in the arrival process increases. We show that a two-stage robust optimization framework is a natural way to model two-timescale decision problems. We provide tractable formulations for the base-station coordination problem and show that our formulation is robust to fluctuations (uncertainties) in the arriving load. This tolerance to load fluctuation also serves to reduce the need for frequent reoptimization across base stations, thus helping minimize the communication overhead required for system-level interference reduction. Our robust optimization formulations are flexible, allowing us to control the conservatism of the solution. Our simulations show that we can build in robustness without significant degradation of nominal performance.
机译:我们考虑在干扰受限且高度动态的系统中运行的蜂窝宽带系统中,采用鲁棒优化驱动的系统级方法来进行干扰管理。这里,相邻小区中的基站(部分地)协调其传输调度,以试图避免同时向其相互的小区边缘传输最大功率。通信开销和回程的使用限制要求基站协调的发生时间比客户到达过程慢。中心的挑战是在缓慢的时间尺度上适当地构造协调决策,因为这些决策随后会限制每个基站的操作,直到下一个协调周期为止。而且,由于协调发生在较慢的时间尺度上,因此到达的客户的统计数据,例如负荷,通常仅是近似已知的,因此,这种协调必须仅用近似的统计知识来完成。我们显示,假设到达过程的不确定性增加,假设已经完全了解这些统计信息的现有方法的性能可能会迅速下降。我们表明,两阶段鲁棒优化框架是建模两时尺度决策问题的自然方法。我们为基站协调问题提供了易于处理的公式,并表明我们的公式对于到达负载的波动(不确定性)具有鲁棒性。这种对负载波动的容忍度还有助于减少跨基站频繁重新优化的需求,从而有助于最小化降低系统级干扰所需的通信开销。我们强大的优化公式非常灵活,使我们能够控制解决方案的保守性。我们的仿真表明,我们可以建立鲁棒性而不会显着降低标称性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号