首页> 外文期刊>Networking, IEEE/ACM Transactions on >A Mathematical Framework for Analyzing Adaptive Incentive Protocols in P2P Networks
【24h】

A Mathematical Framework for Analyzing Adaptive Incentive Protocols in P2P Networks

机译:用于分析P2P网络中的自适应激励协议的数学框架

获取原文
获取原文并翻译 | 示例

摘要

In peer-to-peer (P2P) networks, incentive protocol is used to encourage cooperation among end-nodes so as to deliver a scalable and robust service. However, the design and analysis of incentive protocols have been ad hoc and heuristic at best. The objective of this paper is to provide a simple yet general framework to analyze and design incentive protocols. We consider a class of incentive protocols that can learn and adapt to other end-nodes' strategies. Based on our analytical framework, one can evaluate the expected performance gain and, more importantly, the system robustness of a given incentive protocol. To illustrate the framework, we present two adaptive learning models and three incentive policies and show the conditions in which the P2P networks may collapse and the conditions in which the P2P networks can guarantee a high degree of cooperation. We also show the connection between evaluating incentive protocol and evolutionary game theory so one can easily identify robustness characteristics of a given policy. Using our framework, one can gain the understanding on the price of altruism and system stability, as well as the correctness of the adaptive incentive policy.
机译:在对等(P2P)网络中,激励协议用于鼓励端节点之间的合作,以便提供可伸缩且强大的服务。但是,激励协议的设计和分析充其量只是临时的和启发式的。本文的目的是提供一个简单而通用的框架来分析和设计激励协议。我们考虑了一类激励协议,这些协议可以学习并适应其他终端节点的策略。根据我们的分析框架,您可以评估期望的性能提升,更重要的是,可以评估给定激励协议的系统鲁棒性。为了说明该框架,我们提出了两种自适应学习模型和三种激励策略,并显示了P2P网络可能崩溃的条件以及P2P网络可以保证高度合作的条件。我们还展示了评估激励协议与进化博弈论之间的联系,因此人们可以轻松地确定给定政策的鲁棒性特征。使用我们的框架,您可以了解利他主义的价格和系统稳定性,以及自适应激励政策的正确性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号