首页> 外文期刊>Networking, IEEE/ACM Transactions on >Efficient Algorithms for Neighbor Discovery in Wireless Networks
【24h】

Efficient Algorithms for Neighbor Discovery in Wireless Networks

机译:无线网络中邻居发现的高效算法

获取原文
获取原文并翻译 | 示例

摘要

Neighbor discovery is an important first step in the initialization of a wireless ad hoc network. In this paper, we design and analyze several algorithms for neighbor discovery in wireless networks. Starting with a single-hop wireless network of $n$ nodes, we propose a $Theta(nln n)$ ALOHA-like neighbor discovery algorithm when nodes cannot detect collisions, and an order-optimal $Theta(n)$ receiver feedback-based algorithm when nodes can detect collisions. Our algorithms neither require nodes to have a priori estimates of the number of neighbors nor synchronization between nodes. Our algorithms allow nodes to begin execution at different time instants and to terminate neighbor discovery upon discovering all their neighbors. We finally show that receiver feedback can be used to achieve a $Theta(n)$ running time, even when nodes cannot detect collisions. We then analyze neighbor discovery in a general multihop setting. We establish an upper bound of $O(Deltaln n)$ on the running time of the ALOHA-like algorithm, where $Delta$ denotes the maximum node degree in the network and $n$ the total number of nodes. We also establish a lower bound of $Omega(Delta+ln n)$ on the running time of any randomized neighbor discovery algorithm. Our result thus implies that the ALOHA-like algorithm is at most a factor $min(Delta,ln n)$ worse than optimal.
机译:邻居发现是无线自组织网络初始化中重要的第一步。在本文中,我们设计和分析了几种用于无线网络中邻居发现的算法。从$ n $个节点的单跳无线网络开始,我们提出了一种在节点无法检测到冲突时类似于Theta(nln n)$ ALOHA的邻居发现算法,以及一个顺序最优的$ Theta(n)$接收器反馈-节点可以检测到冲突时使用的基于算法。我们的算法既不需要节点具有邻居数量的先验估计,也不需要节点之间的同步。我们的算法允许节点在不同的时刻开始执行,并在发现所有邻居后终止邻居发现。我们最终证明,即使节点无法检测到冲突,也可以使用接收器反馈来实现$ Theta(n)$运行时间。然后,我们在一般的多跳设置中分析邻居发现。我们在类似ALOHA的算法的运行时间上确定$ O(Deltaln n)$的上限,其中$ Delta $表示网络中的最大节点度,而$ n $表示节点总数。我们还为任何随机邻居发现算法的运行时间确定了$ Omega(Delta + ln n)$的下限。因此,我们的结果表明,类似于ALOHA的算法最多比最优值差$ min(Delta,ln n)$。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号