首页> 外文期刊>Networking, IEEE/ACM Transactions on >FAST CLOUD: Pushing the Envelope on Delay Performance of Cloud Storage With Coding
【24h】

FAST CLOUD: Pushing the Envelope on Delay Performance of Cloud Storage With Coding

机译:快速云:通过编码推动云存储延迟性能的发展

获取原文
获取原文并翻译 | 示例

摘要

Our paper presents solutions that can significantly improve the delay performance of putting and retrieving data in and out of cloud storage. We first focus on measuring the delay performance of a very popular cloud storage service Amazon S3. We establish that there is significant randomness in service times for reading and writing small and medium size objects when assigned distinct keys. We further demonstrate that using erasure coding, parallel connections to storage cloud and limited chunking (i.e., dividing the object into a few smaller objects) together pushes the envelope on service time distributions significantly (e.g., 76%, 80%, and 85% reductions in mean, 90th, and 99th percentiles for 2-MB files) at the expense of additional storage (e.g., 1.75). However, chunking and erasure coding increase the load and hence the queuing delays while reducing the supportable rate region in number of requests per second per node. Thus, in the second part of our paper, we focus on analyzing the delay performance when chunking, forward error correction (FEC), and parallel connections are used together. Based on this analysis, we develop load-adaptive algorithms that can pick the best code rate on a per-request basis by using offline computed queue backlog thresholds. The solutions work with homogeneous services with fixed object sizes, chunk sizes, operation type (e.g., read or write) as well as heterogeneous services with mixture of object sizes, chunk sizes, and operation types. We also present a simple greedy solution that opportunistically uses idle connections and picks the erasure coding rate accordingly on the fly. Both backlog-based and greedy solutions support the full rate region and provide best mean delay performance when compared to the best fixed coding rate policy. Our evaluations show that backlog-based solutions achieve better delay performance at higher percentile values than the g- eedy solution.
机译:我们的论文提出了可以显着提高将数据存储到云存储中以及从云存储中取出数据的延迟性能的解决方案。我们首先关注于衡量非常流行的云存储服务Amazon S3的延迟性能。我们确定,在分配不同的密钥时,读取和写入中小型对象的服务时间存在很大的随机性。我们进一步证明,使用纠删码,与存储云的并行连接和有限的组块(即,将对象划分为几个较小的对象)一起显着推动了服务时间分布上的包络(例如减少了76%,80%和85%)平均来说,对于2 MB文件而言,分别为第90和99个百分位数),但以额外的存储空间为代价(例如1.75)。但是,分块和擦除编码增加了负载,因此增加了排队延迟,同时减少了每个节点每秒请求数中可支持的速率区域。因此,在本文的第二部分中,我们着重分析将分块,前向纠错(FEC)和并行连接一起使用时的延迟性能。基于此分析,我们开发了负载自适应算法,该算法可以使用脱机计算的队列积压阈值在每个请求的基础上选择最佳编码率。该解决方案可用于具有固定对象大小,块大小,操作类型(例如,读取或写入)的同类服务,以及具有对象大小,块大小和操作类型的混合的异构服务。我们还提出了一个简单的贪婪解决方案,该方案适时地使用空闲连接,并在运行中相应地选择擦除编码率。与最佳固定编码率策略相比,基于积压的解决方案和贪婪解决方案均支持全速率区域,并提供最佳的平均延迟性能。我们的评估表明,与按需解决方案相比,基于积压的解决方案在更高的百分位数值上具有更好的延迟性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号