首页> 外文期刊>Networking, IEEE/ACM Transactions on >Inferring Link Metrics From End-To-End Path Measurements: Identifiability and Monitor Placement
【24h】

Inferring Link Metrics From End-To-End Path Measurements: Identifiability and Monitor Placement

机译:从端到端路径测量推断链路度量:可识别性和监控器放置

获取原文
获取原文并翻译 | 示例

摘要

We investigate the problem of identifying individual link metrics in a communication network from end-to-end path measurements, under the assumption that link metrics are additive and constant. To uniquely identify the link metrics, the number of linearly independent measurement paths must equal the number of links. Our contribution is to characterize this condition in terms of the network topology and the number/placement of monitors, under the constraint that measurement paths must be cycle-free. Our main results are: 1) it is generally impossible to identify all the link metrics by using two monitors; 2) nevertheless, metrics of all the interior links not incident to any monitor are identifiable by two monitors if the topology satisfies a set of necessary and sufficient connectivity conditions; 3) these conditions naturally extend to a necessary and sufficient condition for identifying all the link metrics using three or more monitors. We show that these conditions not only facilitate efficient identifiability tests, but also enable an efficient algorithm to place the minimum number of monitors in order to identify all link metrics. Our evaluations on both random and real topologies show that the proposed algorithm achieves identifiability using a much smaller number of monitors than a baseline solution.
机译:我们假设链路度量是可加和恒定的,因此研究了从端到端路径测量中识别通信网络中各个链路度量的问题。为了唯一地标识链路度量,线性独立的测量路径的数量必须等于链路的数量。我们的贡献是在测量路径必须无周期的约束下,根据网络拓扑结构和监视器的数量/位置来描述这种情况。我们的主要结果是:1)通常不可能使用两个监视器来识别所有链路度量; 2)尽管如此,如果拓扑满足一组必要和充分的连接条件,则两个监视器可以识别出所有未发生在任何监视器上的内部链路的度量; 3)这些条件自然会扩展到使用三个或更多监视器来标识所有链路度量的必要和充分条件。我们表明,这些条件不仅有助于进行有效的可识别性测试,而且还使一种有效的算法能够放置最少数量的监视器,以识别所有链路度量。我们对随机和真实拓扑的评估表明,与基线解决方案相比,该算法使用更少的监视器可以实现可识别性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号