首页> 外文期刊>IEEE/ACM Transactions on Networking >A Polynomial-Time Algorithm for Computing Disjoint Lightpath Pairs in Minimum Isolated-Failure-Immune WDM Optical Networks
【24h】

A Polynomial-Time Algorithm for Computing Disjoint Lightpath Pairs in Minimum Isolated-Failure-Immune WDM Optical Networks

机译:最小隔离故障免疫WDM光网络中不相交光路对的多项式时间算法

获取原文
获取原文并翻译 | 示例

摘要

A fundamental problem in survivable routing in wavelength division multiplexing (WDM) optical networks is the computation of a pair of link-disjoint (or node-disjoint) lightpaths connecting a source with a destination, subject to the wavelength continuity constraint. However, this problem is NP-hard when the underlying network topology is a general mesh network. As a result, heuristic algorithms and integer linear programming (ILP) formulations for solving this problem have been proposed. In this paper, we advocate the use of 2-edge connected (or 2-node connected) subgraphs of minimum isolated failure immune networks as the underlying topology for WDM optical networks. We present a polynomial-time algorithm for computing a pair of link-disjoint lightpaths with shortest total length in such networks. The running time of our algorithm is $O(nW^{2})$, where $n$ is the number of nodes, and $W$ is the number of wavelengths per link. Numerical results are presented to demonstrate the effectiveness and scalability of our algorithm. Extension of our algorithm to the node-disjoint case is straightforward.
机译:波分多路复用(WDM)光网络中可生存路由的一个基本问题是计算一对将源与目的地连接在一起的链路不相交(或节点不相交)光路,但要遵守波长连续性约束。但是,当基础网络拓扑是通用网状网络时,此问题很难解决。结果,已经提出了用于解决该问题的启发式算法和整数线性规划(ILP)公式。在本文中,我们提倡使用最小隔离故障免疫网络的2边连接(或2节点连接)子图作为WDM光网络的基础拓扑。我们提出了一种多项式时间算法,用于计算此类网络中总长度最短的一对不相交的光路。我们的算法的运行时间为$ O(nW ^ {2})$,其中$ n $是节点数,$ W $是每条链路的波长数。数值结果表明了该算法的有效性和可扩展性。将我们的算法扩展到节点不相交的情况很简单。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号