首页> 外文期刊>IEEE/ACM Transactions on Networking >On Time-Constrained Data Harvesting in Wireless Sensor Networks: Approximation Algorithm Design
【24h】

On Time-Constrained Data Harvesting in Wireless Sensor Networks: Approximation Algorithm Design

机译:无线传感器网络中受时间限制的数据收集:近似算法设计

获取原文
获取原文并翻译 | 示例

摘要

In wireless sensor networks, data harvesting using mobile data ferries has recently emerged as a promising alternative to the traditional multi-hop communication paradigm. The use of data ferries can significantly reduce energy consumption at sensor nodes and increase network lifetime. However, it usually incurs long data delivery latency as the data ferry needs to travel through the network to collect data, during which some delay-sensitive data may become obsolete. Therefore, it is important to optimize the trajectory of the data ferry with data delivery latency bound for this approach to be effective in practice. To address this problem, we formally define the time-constrained data harvesting problem, which seeks an optimal data harvesting path in a network to collect as much data as possible within a time duration. We then investigate the formulated data harvesting problem in the generic m-dimensional context, of which the cases of m=1, 2, 3 are particularly pertinent. We first characterize the performance bound given by the optimal data harvesting algorithm and show that the optimal algorithm significantly outperforms the random algorithm, especially when network scales. However, we mathematically prove that finding the optimal data harvesting path is NP-hard. We therefore devise an approximation algorithm and mathematically prove the output being a constant-factor approximation of the optimal solution. Our experimental results also demonstrate that our approximation algorithm significantly outperforms the random algorithm in a wide range of network settings.
机译:在无线传感器网络中,最近出现了使用移动数据轮渡进行数据收集的一种有希望的替代传统多跳通信模式的方法。数据轮渡的使用可以显着减少传感器节点的能耗并延长网络寿命。但是,由于数据渡轮需要通过网络来收集数据,因此通常会导致较长的数据传递延迟,在此期间,一些对延迟敏感的数据可能会过时。因此,在实践中有效地优化具有数据传输延迟的数据渡轮的轨迹非常重要。为了解决这个问题,我们正式定义了时间受限的数据收集问题,该问题寻求网络中的最佳数据收集路径以在一个持续时间内收集尽可能多的数据。然后,我们在通用的m维上下文中研究制定的数据收集问题,其中m = 1、2、3的情况特别相关。我们首先描述了最佳数据收集算法所给出的性能界限,并表明最佳算法明显优于随机算法,尤其是在网络扩展时。但是,我们从数学上证明,找到最佳数据收集路径是NP难的。因此,我们设计了一种近似算法,并在数学上证明了输出是最优解的恒定因子近似。我们的实验结果还表明,在广泛的网络设置中,我们的近似算法明显优于随机算法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号