首页> 外文期刊>IEEE/ACM Transactions on Networking >A General Collaborative Framework for Modeling and Perceiving Distributed Network Behavior
【24h】

A General Collaborative Framework for Modeling and Perceiving Distributed Network Behavior

机译:用于建模和感知分布式网络行为的通用协作框架

获取原文
获取原文并翻译 | 示例

摘要

Collaborative Anomaly Detection (CAD) is an emerging field of network security in both academia and industry. It has attracted a lot of attention, due to the limitations of traditional fortress-style defense modes. Even though a number of pioneer studies have been conducted in this area, few of them concern about the universality issue. This work focuses on two aspects of it. First, a unified collaborative detection framework is developed based on network virtualization technology. Its purpose is to provide a generic approach that can be applied to designing specific schemes for various application scenarios and objectives. Second, a general behavior perception model is proposed for the unified framework based on hidden Markov random field. Spatial Markovianity is introduced to model the spatial context of distributed network behavior and stochastic interaction among interconnected nodes. Algorithms are derived for parameter estimation, forward prediction, backward smooth, and the normality evaluation of both global network situation and local behavior. Numerical experiments using extensive simulations and several real datasets are presented to validate the proposed solution. Performance-related issues and comparison with related works are discussed.
机译:协作异常检测(CAD)是学术界和行业中网络安全的新兴领域。由于传统的堡垒式防御方式的局限性,它引起了很多关注。即使在这一领域进行了许多先驱研究,但很少有人关注普遍性问题。这项工作侧重于两个方面。首先,基于网络虚拟化技术开发了统一的协同检测框架。其目的是提供一种通用方法,可将其应用于为各种应用场景和目标设计特定方案。其次,针对基于隐马尔可夫随机场的统一框架,提出了一种通用的行为感知模型。引入空间马尔可夫性来建模分布式网络行为的空间上下文以及互连节点之间的随机交互。推导了用于参数估计,前向预测,后向平滑以及全局网络状况和局部行为的正常性评估的算法。提出了使用大量模拟和几个实际数据集的数值实验,以验证所提出的解决方案。讨论了与性能相关的问题以及与相关作品的比较。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号