首页> 外文期刊>IEEE/ACM Transactions on Networking >Using Viewing Statistics to Control Energy and Traffic Overhead in Mobile Video Streaming
【24h】

Using Viewing Statistics to Control Energy and Traffic Overhead in Mobile Video Streaming

机译:使用查看统计信息来控制移动视频流中的能源和流量开销

获取原文
获取原文并翻译 | 示例

摘要

Video streaming can drain a smartphone battery quickly. A large part of the energy consumed goes to wireless communication. In this article, we first study the energy efficiency of different video content delivery strategies used by service providers and identify a number of sources of energy inefficiency. Specifically, we find a fundamental tradeoff in energy waste between prefetching small and large chunks of video content: small chunks are bad because each download causes a fixed tail energy to be spent regardless of the amount of content downloaded, whereas large chunks increase the risk of downloading data that user will never view because of abandoning the video. Hence, the key to optimal strategy lies in the ability to predict when the user might abandon viewing prematurely. We then propose an algorithm called eSchedule that uses viewing statistics to predict viewer behavior and computes an energy optimal download strategy for a given mobile client. The algorithm also includes a mechanism for explicit control of traffic overhead, i.e., unnecessary download of content that the user will never watch. Our evaluation results suggest that the algorithm can cut the energy waste down to less than half compared to other strategies. We also present and experiment with an Android prototype that integrates eSchedule into a YouTube downloader.
机译:视频流媒体可能会很快耗尽智能手机的电池电量。消耗的大部分能量都用于无线通信。在本文中,我们首先研究服务提供商使用的不同视频内容交付策略的能效,并确定许多能源效率低下的来源。具体来说,我们发现在预取大小不同的视频内容之间存在能源浪费的根本折衷:小块是不好的,因为每次下载都会消耗固定的尾部能量,而与下载的内容量无关,而大块会增加下载用户由于放弃视频而永远无法查看的数据。因此,最佳策略的关键在于预测用户何时可能会过早放弃观看的能力。然后,我们提出了一种称为eSchedule的算法,该算法使用观看统计信息来预测观看者的行为并计算给定移动客户端的能量最佳下载策略。该算法还包括用于显式控制流量开销的机制,即用户永远不会观看的不必要的内容下载。我们的评估结果表明,与其他策略相比,该算法可以将能源浪费减少到不到一半。我们还展示并试验了将eSchedule集成到YouTube下载器中的Android原型。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号