首页> 外文期刊>IEEE/ACM Transactions on Networking >Minimum-Cost Cloud Storage Service Across Multiple Cloud Providers
【24h】

Minimum-Cost Cloud Storage Service Across Multiple Cloud Providers

机译:跨多个云提供商的最低成本的云存储服务

获取原文
获取原文并翻译 | 示例

摘要

Many cloud service providers (CSPs) provide data storage services with datacenters distributed worldwide. These datacenters provide different get/put latencies and unit prices for resource utilization and reservation. Thus, when selecting different CSPs’ datacenters, cloud customers of globally distributed applications (e.g., online social networks) face two challenges: 1) how to allocate data to worldwide datacenters to satisfy application service level objective (SLO) requirements, including both data retrieval latency and availability and2) how to allocate data and reserve resources in datacenters belonging to different CSPs to minimize the payment cost. To handle these challenges, we first model the cost minimization problem under SLO constraints using the integer programming. Due to its NP-hardness, we then introduce our heuristic solution, including a dominant-cost-based data allocation algorithm and an optimal resource reservation algorithm. We further propose three enhancement methods to reduce the payment cost and service latency: 1) coefficient-based data reallocation; 2) multicast-based data transferring; and 3) request redirection-based congestion control. We finally introduce an infrastructure to enable the conduction of the algorithms. Our trace-driven experiments on a supercomputing cluster and on real clouds (i.e., Amazon S3, Windows Azure Storage, and Google Cloud Storage) show the effectiveness of our algorithms for SLO guaranteed services and customer cost minimization.
机译:许多云服务提供商(CSP)通过遍布全球的数据中心提供数据存储服务。这些数据中心为资源利用和预留提供不同的获取/等待时间和单价。因此,当选择不同的CSP的数据中心时,全球分布式应用程序(例如,在线社交网络)的云客户面临两个挑战:1)如何将数据分配给全球数据中心以满足应用程序服务级别目标(SLO)要求,包括数据检索延迟和可用性; 2)如何在属于不同CSP的数据中心中分配数据和保留资源,以最大程度地减少支付成本。为了应对这些挑战,我们首先使用整数编程对SLO约束下的成本最小化问题进行建模。由于其NP硬度,我们然后介绍我们的启发式解决方案,包括基于支配成本的数据分配算法和最佳资源预留算法。我们进一步提出了三种增强的方法来减少支付成本和服务等待时间:1)基于系数的数据重新分配; 2)基于组播的数据传输; 3)基于请求重定向的拥塞控制。最后,我们介绍一个基础结构,以支持算法的实施。我们在超级计算集群和真实云(即Amazon S3,Windows Azure存储和Google云存储)上的跟踪驱动实验表明,我们的算法对于SLO保证服务和客户成本最小化的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号