首页> 外文期刊>IEEE/ACM Transactions on Networking >Optimizing in the Dark: Learning Optimal Network Resource Reservation Through a Simple Request Interface
【24h】

Optimizing in the Dark: Learning Optimal Network Resource Reservation Through a Simple Request Interface

机译:在黑暗中优化:通过简单的请求界面学习最佳网络资源预留

获取原文
获取原文并翻译 | 示例

摘要

Network resource reservation systems are being developed and deployed, driven by the demand and substantial benefits of providing performance predictability for modern distributed applications. However, existing systems suffer limitations: They either are inefficient in finding the optimal resource reservation, or cause private information (e.g., from the network infrastructure) to be exposed (e.g., to the user). In this paper, we design BoxOpt, a novel system that leverages efficient oracle construction techniques in optimization and learning theory to automatically, and swiftly learn the optimal resource reservations without exchanging any private information between the network and the user. In BoxOpt, we first model the simple reservation interface adopted in most reservation systems as a resource membership oracle. Second, we develop an efficient algorithm that constructs a resource separation oracle by a linear number of calls on resource membership oracle. Third, we develop a generic framework to construct a resource optimization oracle by iteratively calling the resource separation oracle, and then develop three novel, efficient algorithms under this generic framework, the best of which computes the optimal resource reservation by a linear number of calls on resource separation oracle. As such, BoxOpt can discover the optimal resource reservation with O(n(2)) calls on the resource membership oracle. We implement a prototype of BoxOpt with and demonstrate its efficiency and efficacy via extensive experiments using real network topology and a 7-day trace from a large operational federation network. Results show that (1) BoxOpt has a 100% correctness ratio by comparing with a state-of-the-art optimization solver, and (2) for 90% of requests, BoxOpt learns the optimal resource reservation within 10 seconds.
机译:通过为现代分布式应用提供性能可预测性的需求和大量益处,正在开发和部署网络资源预订系统。然而,现有系统遭受限制:它们效率低于找到最佳资源预留,或者导致私人信息(例如,从网络基础设施)被暴露(例如,给用户)。在本文中,我们设计BoxOpt,这是一种新颖的系统,可以在优化和学习理论中利用高效的Oracle施工技术,自动,并迅速地学习最佳资源预留,而无需交换网络和用户之间的任何私人信息。在BoxOpt中,我们首先将大多数预订系统采用的简单预留界面作为资源成员资格oracle。其次,我们开发一种高效的算法,通过资源成员资源成员oracle上的线性呼叫来构建资源分离oracle。第三,我们开发一个通用框架来构建资源优化Oracle,通过迭代地调用资源分离Oracle,然后在这个通用框架下开发三个新颖,高效的算法,其中最好通过线性呼叫计算最佳资源预留资源分离oracle。因此,BoxOpt可以在资源成员资源Oracle上发现O(n(2))呼叫的最佳资源预留。我们通过使用真实网络拓扑结构和大型运营联合网络的7天曲线来实现BoxOpt的原型和展示其效率和功效。结果表明(1)Boxpt通过与最先进的优化求解器进行比较,(2)为90%的请求,Boxopt在10秒内学习最佳资源预留,拥有100%的正确性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号