机译:在黑暗中优化:通过简单的请求界面学习最佳网络资源预留
Xiamen Univ Sch Informat Xiamen 361005 Peoples R China|Yale Univ Dept Comp Sci New Haven CT 06520 USA;
Peng Cheng Lab Shenzhen 518066 Peoples R China|Tongji Univ Dept Comp Sci & Technol Shanghai 200092 Peoples R China;
Yale Univ Dept Comp Sci New Haven CT 06520 USA;
IBM TJ Watson Res Ctr New York NY 10562 USA;
Lawrence Berkeley Natl Lab Berkeley CA 94720 USA;
Shanghai Jiao Tong Univ Dept Comp Sci & Engn Shanghai 200240 Peoples R China;
Yale Univ Dept Comp Sci New Haven CT 06520 USA|Peng Cheng Lab Shenzhen 518066 Peoples R China;
Machine learning; network optimization; resource orchestration; bandwidth reservation;
机译:七核弹性光网络中基于传递学习的基于频谱优化的资源预留
机译:弹性光网络中高级预留请求的静态资源分配
机译:将资源预留与服务请求分开,以提高光突发交换网络的性能
机译:在黑暗中优化:通过简单的请求界面学习最佳解决方案
机译:网格中用于预先处理预订请求的资源共分配技术。
机译:根据视频分类场景自适应预留网络资源
机译:将资源预留与服务请求分开,以提高光突发交换网络的性能