首页> 外文期刊>IEEE/ACM Transactions on Networking >Traffic Engineering in Partially Deployed Segment Routing Over IPv6 Network With Deep Reinforcement Learning
【24h】

Traffic Engineering in Partially Deployed Segment Routing Over IPv6 Network With Deep Reinforcement Learning

机译:通过深度增强学习的IPv6网络部分部署段路由的交通工程

获取原文
获取原文并翻译 | 示例

摘要

Segment Routing (SR) is a source routing paradigm which is widely used in Traffic Engineering (TE). By using SR, a node steers a packet through an ordered list of instructions called segments. By some extensions of interior gateway protocol, SR can be applied to IP/MPLS or IPv6 network without signal protocol. SR over IPv6 (SRv6) is attracting wide attention because of its interoperation ability with IPv6. However, upgrading the existing IPv6 network directly to a full SRv6 one can be difficult, because large-scale equipment replacement or software upgrade may cause economic and technical problems. TE in partially deployed SR network is becoming a hot research topic. In this paper, we propose the TE algorithm Weight Adjustment-SRTE (WA-SRTE) in partially deployed SRv6 network, in which SRv6 capable nodes are dispersedly deployed. Our objective is to minimize the network's maximum link utilization. WA-SRTE converts the TE problem into a Deep Reinforcement Learning problem and optimizes the OSPF weight, SRv6 node deployment and traffic paths simultaneously. Besides, traffic variation is also considered and we use a representative Traffic Matrix (TM) to epitomize the traffic characteristics over a period of time. Experiments demonstrate that with 20% to 40% of the SRv6 nodes deployed, we can achieve TE performance as good as in a full SR network for the experiment topologies. The results with WA remarkably outperform the results without it. Our algorithm also gets near-optimal results with changing traffic.
机译:段路由(SR)是广泛用于交通工程(TE)的源路由范例。通过使用SR,节点通过称为段的有序指令列表来实现分组。通过内部网关协议的一些扩展,SR可以应用于没有信号协议的IP / MPLS或IPv6网络。 SR OVER IPv6(SRV6)由于其具有IPv6的互操作性而引起了广泛的关注。但是,将现有的IPv6网络直接升级到完整的SRV6,可能难以困难,因为大规模设备更换或软件升级可能导致经济和技术问题。部分部署的SR网络正在成为一个热门的研究主题。在本文中,我们提出了部分部署的SRV6网络中的TE算法权重调整-Srte(WA-SRTE),其中SRV6能力的节点分散地部署。我们的目标是最大限度地减少网络的最大联系利用率。 WA-SRTE将TE问题转换为深度加强学习问题,并同时优化OSPF重量,SRV6节点部署和流量路径。此外,还考虑了业务变化,并且我们使用代表性的交通矩阵(TM)在一段时间内阐述交通特性。实验表明,部署了20%至40%的SRV6节点,我们可以在实验拓扑的完整SR网络中实现TE性能。使用WA的结果非常优于结果。我们的算法还可以随着交通的变化而近乎最佳结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号