首页> 外文期刊>IEEE/ACM Transactions on Networking >Vehicular-OBUs-As-On-Demand-Fogs: Resource and Context Aware Deployment of Containerized Micro-Services
【24h】

Vehicular-OBUs-As-On-Demand-Fogs: Resource and Context Aware Deployment of Containerized Micro-Services

机译:车辆 - 欧姆斯的低价雾:资源和上下文意识到集装箱微型服务的部署

获取原文
获取原文并翻译 | 示例

摘要

Observing the headway in vehicular industry, new applications are developed demanding more resources. For instance, real-time vehicular applications require fast processing of the vast amount of generated data by vehicles in order to maintain service availability and reachability while driving. Fog devices are capable of bringing cloud intelligence near the edge, making them a suitable candidate to process vehicular requests. However, their location, processing power, and technology used to host and update services affect their availability and performance while considering the mobility patterns of vehicles. In this paper, we overcome the aforementioned limitations by taking advantage of the evolvement of On-Board Units, Kubeadm Clustering, Docker Containerization, and micro-services technologies. In this context, we propose an efficient resource and context aware approach for deploying containerized micro-services on on-demand fogs called Vehicular-OBUs-As-On-Demand-Fogs. Our proposed scheme embeds (1) a Kubeadm based approach for clustering OBUs and enabling on-demand micro-services deployment with the least costs and time using Docker containerization technology, (2) a hybrid multi-layered networking architecture to maintain reachability between the requesting user and available vehicular fog cluster, and (3) a vehicular multi-objective container placement model for producing efficient vehicles selection and services distribution. An Evolutionary Memetic Algorithm is elaborated to solve our vehicular container placement problem. Experiments and simulations demonstrate the relevance and efficiency of our approach compared to other recent techniques in the literature.
机译:观察车辆行业的前往,开发了新的应用要求更多的资源。例如,实时车辆应用需要快速处理车辆的大量生成数据,以便在驾驶时维护服务可用性和可达性。 FOG设备能够在边缘附近带来云智能,使其成为处理车辆请求的合适候选者。然而,他们的位置,处理能力和用于托管和更新服务的技术会在考虑车辆的移动模式时影响其可用性和性能。在本文中,我们通过利用板载单位的演变,Kubeadm集群,Docker集装箱和微服务技术的演变来克服上述限制。在此上下文中,我们提出了一种有效的资源和上下文意识到,用于在按需雾上部署集装式微型服务,称为车辆 - 欧姆斯的按需雾。我们所提出的计划嵌入(1)基于KubeadM基于KubeadM的群集方法,并使用Docker Containerization Technology的成本和时间实现了按需微型服务部署,(2)混合多层网络架构,以维持请求之间的可达性用户和可用的车辆雾簇,和(3)一种用于生产高效车辆选择和服务分布的车辆多目标集装箱放置模型。详细阐述了一种进化的膜算法以解决我们的车辆容器放置问题。实验和仿真展示了与文献中的最近技术相比的方法的相关性和效率。

著录项

相似文献

  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号