...
首页> 外文期刊>IEEE/ACM Transactions on Networking >Reliable Physical-Layer Cross-Technology Communication With Emulation Error Correction
【24h】

Reliable Physical-Layer Cross-Technology Communication With Emulation Error Correction

机译:具有仿真误差校正的可靠物理层交叉技术通信

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Physical-Layer Cross-Technology Communication (PHY-CTC), which achieves direct communication among heterogeneous technologies, brings great opportunities to help diverse IoT devices achieve harmonious coexistence through explicit coordination. The core technique of PHY-CTC is signal emulation which utilizes the signal of one technology (e.g., WiFi) to emulate the signal of another technology (e.g., ZigBee). The signal emulation based approach, however, inevitably introduces emulation errors which further lead to unreliable communication. In this paper, we aim to recover the intrinsic emulation errors and establish reliable PHY-CTC. We propose TwinBee which (i) explores chip-level error patterns and (ii) corrects emulation errors with symbol-level chip-combining coding/decoding and soft mapping. To achieve this, TwinBee dose not require accessing chip information as well as making hardware changes. We implement TwinBee on commodity devices (i.e., Laptops with Atheros AR2425 WiFi card and TelosB motes) and the USRPN210 platform (for physical layer evaluation). Experiment results show that TwinBee significantly improves the Packet Reception Ratio (PRR) of PHY-CTC from 50%-60% to more than 99%. Furthermore, we demonstrate the reliability of TwinBee in a data dissemination application over a network of 20 TelosB nodes, achieving over $42imes $ reduction of data dissemination delay compared to the state-of-the-art.
机译:物理层跨技术通信(PHY-CTC)实现异构技术中的直接沟通,带来了很大的帮助,帮助各种IOT设备通过明确的协调实现和谐共存。 PHY-CTC的核心技术是信号仿真,其利用一种技术(例如,WiFi)的信号来模拟另一种技术的信号(例如,ZigBee)。然而,基于信号仿真的方法不可避免地引入了进一步导致不可靠的通信的仿真误差。在本文中,我们的目标是恢复内在仿真误差并建立可靠的PHY-CTC。我们提出了Twinbee(i)探索芯片级错误模式和(ii)纠正符号级芯片组合编码/解码和软映射的仿真错误。为此,TwinBee剂量不需要访问芯片信息以及进行硬件更改。我们在商品设备上实施双人(即,带Atheros AR2425 WiFi卡和Telosb Motes的笔记本电脑)和USRPN210平台(用于物理层评估)。实验结果表明,Twinbee显着改善了PHY-CTC的分组接收比(PRR)从50%-60%到99%以上。此外,我们在20个Telosb节点的网络上展示了Twinbee在数据传播应用中的可靠性,与最先进的数据传播延迟实现了超过42倍。

著录项

  • 来源
    《IEEE/ACM Transactions on Networking》 |2020年第2期|612-624|共13页
  • 作者单位

    Univ Chinese Acad Sci Dept Elect Elect & Commun Engn Beijing 100049 Peoples R China;

    Southeast Univ Sch Comp Sci & Engn Key Lab Comp Network & Informat Integrat Nanjing 210096 Peoples R China;

    Harbin Inst Technol Sch Comp Sci & Technol Harbin 150001 Peoples R China;

    Southeast Univ Sch Comp Sci & Engn Nanjing 210096 Peoples R China|Southeast Univ Sch Cyber Sci & Engn Nanjing 210096 Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Reliable communication; cross technology communication; coding;

    机译:可靠的沟通;交叉技术沟通;编码;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号