首页> 外文期刊>IEEE/ACM Transactions on Networking >Finding the Stars in the Fireworks: Deep Understanding of Motion Sensor Fingerprint
【24h】

Finding the Stars in the Fireworks: Deep Understanding of Motion Sensor Fingerprint

机译:在烟花中寻找星星:对运动传感器指纹的深入了解

获取原文
获取原文并翻译 | 示例

摘要

With the proliferation of mobile devices and various sensors (e.g., GPS, magnetometer, accelerometers, gyroscopes) equipped, richer services, e.g. location based services, are provided to users. A series of methods have been proposed to protect the users' privacy, especially the trajectory privacy. Hardware fingerprinting has been demonstrated to be a surprising and effective source for identifying/authenticating devices. In this work, we show that a few data samples collected from the motion sensors are enough to uniquely identify the source mobile device, i.e., the raw motion sensor data serves as a fingerprint of the mobile device. Specifically, we first analytically understand the fingerprinting capacity using features extracted from hardware data. To capture the essential device feature automatically, we design a multi-LSTM neural network to fingerprint mobile device sensor in real-life uses, instead of using handcrafted features by existing work. Using data collected over 6 months, for arbitrary user movements, our fingerprinting model achieves 93% F-score given one second data, while the state-of-the-art work achieves 79% F-score. Given ten seconds randomly sampled data, our model can achieve 98.8% accuracy. We also propose a novel generative model to modify the original sensor data and yield anonymized data with little fingerprint information while retain good data utility.
机译:随着移动设备和各种传感器(例如GPS,磁力计,加速度计,陀螺仪)的普及,更丰富的服务,例如向用户提供基于位置的服务。已经提出了一系列方法来保护用户的隐私,尤其是轨迹的隐私。硬件指纹已被证明是用于识别/认证设备的令人惊讶且有效的来源。在这项工作中,我们表明从运动传感器收集的一些数据样本足以唯一地标识源移动设备,即原始运动传感器数据充当移动设备的指纹。具体来说,我们首先使用从硬件数据中提取的特征来分析地了解指纹识别能力。为了自动捕获基本的设备功能,我们设计了一个多LSTM神经网络来对现实生活中的移动设备传感器进行指纹识别,而不是通过现有工作使用手工制作的功能。使用6个月内收集的数据,对于任意用户移动,我们的指纹模型在给定一秒钟数据的情况下达到93%的F分数,而最新的工作达到79%的F分数。给定十秒钟的随机采样数据,我们的模型可以达到98.8%的准确性。我们还提出了一种新颖的生成模型,以修改原始传感器数据并以较少的指纹信息生成匿名数据,同时保留良好的数据实用性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号