首页> 外文期刊>Computational Biology and Bioinformatics, IEEE/ACM Transactions on >RDCurve: A Nonparametric Method to Evaluate the Stability of Ranking Procedures
【24h】

RDCurve: A Nonparametric Method to Evaluate the Stability of Ranking Procedures

机译:RDCurve:评价排名程序稳定性的非参数方法

获取原文
获取原文并翻译 | 示例

摘要

Great concerns have been raised about the reproducibility of gene signatures based on high-throughput techniques such as microarray. Studies analyzing similar samples often report poorly overlapping results, and the p-value usually lacks biological context. We propose a nonparametric ReDiscovery Curve (RDCurve) method, to estimate the frequency of rediscovery of gene signature identified. Given a ranking procedure and a data set with replicated measurements, the RDCurve bootstraps the data set and repeatedly applies the ranking procedure, selects a subset of k important genes, and estimates the probability of rediscovery of the selected subset of genes. We also propose a permutation scheme to estimate the confidence band under the Null hypothesis for the significance of the RDCurve. The method is nonparametric and model-independent. With the RDCurve, we can assess the signal-to-noise ratio of the data, compare the performance of ranking procedures in term of their expected rediscovery rates, and choose the number of genes to be reported.
机译:人们对基于高通量技术(例如微阵列)的基因签名的可再现性提出了极大的关注。分析相似样本的研究通常报告结果重叠差,并且p值通常缺乏生物学背景。我们提出了一种非参数的ReDiscovery曲线(RDCurve)方法,以估计已发现的基因签名的重新发现频率。给定排序过程和具有重复测量值的数据集,RDCurve引导数据集并重复应用排序过程,选择k个重要基因的子集,并估计重新发现选定基因子集的可能性。对于RDCurve的重要性,我们还提出了一种置换方案来估计Null假设下的置信带。该方法是非参数的且与模型无关。借助RDCurve,我们可以评估数据的信噪比,根据预期的重新发现率比较排名程序的性能,并选择要报告的基因数量。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号