首页> 外文期刊>Computational Biology and Bioinformatics, IEEE/ACM Transactions on >Automated Hierarchical Density Shaving: A Robust Automated Clustering and Visualization Framework for Large Biological Data Sets
【24h】

Automated Hierarchical Density Shaving: A Robust Automated Clustering and Visualization Framework for Large Biological Data Sets

机译:自动化的分层密度剃须:用于大型生物数据集的鲁棒的自动化聚类和可视化框架

获取原文
获取原文并翻译 | 示例

摘要

A key application of clustering data obtained from sources such as microarrays, protein mass spectroscopy, and phylogenetic profiles is the detection of functionally related genes. Typically, only a small number of functionally related genes cluster into one or more groups, and the rest need to be ignored. For such situations, we present Automated Hierarchical Density Shaving (Auto-HDS), a framework that consists of a fast hierarchical density-based clustering algorithm and an unsupervised model selection strategy. Auto-HDS can automatically select clusters of different densities, present them in a compact hierarchy, and rank individual clusters using an innovative stability criteria. Our framework also provides a simple yet powerful 2D visualization of the hierarchy of clusters that is useful for further interactive exploration. We present results on Gasch and Lee microarray data sets to show the effectiveness of our methods. Additional results on other biological data are included in the supplemental material.
机译:从微阵列,蛋白质质谱和系统发育谱等来源获得的聚类数据的关键应用是功能相关基因的检测。通常,只有少数功能相关的基因会聚成一个或多个组,其余的则需要忽略。对于这种情况,我们提出了自动分层密度刮除(Auto-HDS),该框架由基于分层密度的快速聚类算法和无监督模型选择策略组成。 Auto-HDS可以自动选择不同密度的群集,以紧凑的层次结构显示它们,并使用创新的稳定性标准对各个群集进行排序。我们的框架还提供了集群层次结构的简单而强大的2D可视化,对于进一步的交互式探索很有用。我们在Gasch和Lee微阵列数据集上显示结果,以显示我们方法的有效性。补充材料中还包含其他生物学数据的其他结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号