首页> 外文期刊>IEEE/ACM transactions on computational biology and bioinformatics >Classifying the Progression of Ductal Carcinoma from Single-Cell Sampled Data via Integer Linear Programming: A Case Study
【24h】

Classifying the Progression of Ductal Carcinoma from Single-Cell Sampled Data via Integer Linear Programming: A Case Study

机译:通过整数线性规划从单细胞采样数据中分类导管癌的进展:一个案例研究

获取原文
获取原文并翻译 | 示例

摘要

Ductal Carcinoma In Situ (DCIS) is a precursor lesion of Invasive Ductal Carcinoma (IDC) of the breast. Investigating its temporal progression could provide fundamental new insights for the development of better diagnostic tools to predict which cases of DCIS will progress to IDC. We investigate the problem of reconstructing a plausible progression from single-cell sampled data of an individual with synchronous DCIS and IDC. Specifically, by using a number of assumptions derived from the observation of cellular atypia occurring in IDC, we design a possible predictive model using integer linear programming (ILP). Computational experiments carried out on a preexisting data set of 13 patients with simultaneous DCIS and IDC show that the corresponding predicted progression models are classifiable into categories having specific evolutionary characteristics. The approach provides new insights into mechanisms of clonal progression in breast cancers and helps illustrate the power of the ILP approach for similar problems in reconstructing tumor evolution scenarios under complex sets of constraints.
机译:原位导管癌(DCIS)是乳腺浸润性导管癌(IDC)的前体病变。研究其时间进展可能为开发更好的诊断工具提供基础新见解,从而预测哪些DCIS病例将发展为IDC。我们研究了从具有同步DCIS和IDC的个人的单细胞采样数据重建合理的进展的问题。具体而言,通过使用从IDC中发生的细胞异型性的观察中得出的许多假设,我们使用整数线性规划(ILP)设计可能的预测模型。对已有的同时患有DCIS和IDC的13例患者的数据集进行的计算实验表明,相应的预测进展模型可分为具有特定进化特征的类别。该方法提供了对乳腺癌克隆进展机制的新见解,并有助于说明ILP方法在复杂约束条件下重建肿瘤进化方案中类似问题的作用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号