首页> 外文期刊>IEEE/ACM transactions on computational biology and bioinformatics >An Ensemble Method to Reconstruct Gene Regulatory Networks Based on Multivariate Adaptive Regression Splines
【24h】

An Ensemble Method to Reconstruct Gene Regulatory Networks Based on Multivariate Adaptive Regression Splines

机译:基于多变量自适应回归样条的重建基因监管网络的集合方法

获取原文
获取原文并翻译 | 示例

摘要

Gene regulatory networks (GRNs) play a key role in biological processes. However, GRNs are diverse under different biological conditions. Reconstructing gene regulatory networks (GRNs) from gene expression has become an important opportunity and challenge in the past decades. Although there are a lot of existing methods to infer the topology of GRNs, such as mutual information, random forest, and partial least squares, the accuracy is still low due to the noise and high dimension of the expression data. In this paper, we introduce an ensemble Multivariate Adaptive Regression Splines (MARS) based method to reconstruct the directed GRNs from multifactorial gene expression data, called PBMarsNet. PBMarsNet incorporates part mutual information (PMI) to pre-weight the candidate regulatory genes and then uses MARS to detect the nonlinear regulatory links. Moreover, we apply bootstrap to run the MARS multiple times and average the outputs of each MARS as the final score of regulatory links. The results on DREAM4 challenge and DREAMS challenge datasets show PBMarsNet has a superior performance and generalization over other state-of-the-art methods.
机译:基因监管网络(GRNS)在生物过程中发挥关键作用。但是,GRNS在不同的生物条件下多样化。从基因表达重建基因调控网络(GRNS)已成为过去几十年的重要机遇和挑战。尽管有很多现有的方法来推断GRNS的拓扑,例如相互信息,随机森林和偏最小二乘,但由于表达数据的噪声和高维度,精度仍然很低。在本文中,我们介绍了基于集合多变量的自适应回归样条(MARS)的方法,以重建来自Multifactorial基因表达数据的定向GRN,称为PBMarsnet。 PBMARSNET将部分互信息(PMI)与候选调节基因进行预先重量,然后使用火星来检测非线性调节环节。此外,我们应用Bootstrap以多次运行火星,并将每个火星的输出平均作为监管链路的最终得分。梦幻挑战和梦想挑战数据集的结果显示PBMARSNET在其他最先进的方法上具有卓越的性能和泛化。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号