首页> 外文期刊>IEEE/ACM transactions on computational biology and bioinformatics >Classification of Antibacterial Peptides Using Long Short-Term Memory Recurrent Neural Networks
【24h】

Classification of Antibacterial Peptides Using Long Short-Term Memory Recurrent Neural Networks

机译:使用长短期记忆经常性神经网络进行抗菌肽的分类

获取原文
获取原文并翻译 | 示例

摘要

Antimicrobial peptides are short amino acid sequences that may be antibacterial, antifungal, and antiviral. Most machine learning methodologies applied to identifying antibacterial peptides have developed feature vectors of identical lengths for each peptide in a given dataset although the peptides themselves may differ in number of amino acids. Features are often chosen which represent certain periodic patterns in the peptide sequence without any initial guidance as to whether such patterns are relevant for the classification task at hand. This can result in the construction of a large number of irrelevant features in addition to relevant features. To help alleviate these issues, we choose to extract a feature vector from individual amino acid feature representations through the application of bidirectional Long Short-Term Memory recurrent neural networks. The Long Short-Term Memory network recursively iterates along both directions of the given amino acid sequence and ultimately extracts a finite length feature vector that is then used to classify the peptide. This work demonstrates the application of Long Short-Term Memory recurrent neural networks to classification of antibacterial peptides and compares it to a Random Forest classifier and a k-nearest neighbor classifier.
机译:抗微生物肽是抗菌,抗真菌和抗病毒的短氨基酸序列。对于鉴定抗菌肽的大多数机器学习方法已经开发了给定数据集中的每种肽的相同长度的特征载体,尽管肽本身在氨基酸的数量中可能不同。通常选择特征,其代表肽序列中的某些周期性模式,没有任何初始指导,以及这些模式是否与手头的分类任务相关。除相关特征外,这可能导致构造大量无关的功能。为了帮助缓解这些问题,我们选择通过应用双向长期内记忆经常性神经网络来提取来自个体氨基酸特征表示的特征向量。长短期记忆网络沿着给定氨基酸序列的两个方向递归地迭代,并最终提取有限长度的特征载体,然后用于对肽进行分类。这项工作证明了长短期记忆复发性神经网络在抗菌肽的分类中施加并将其与随机林分类器和K最近邻分类器进行比较。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号