首页> 外文期刊>IEEE/ACM transactions on computational biology and bioinformatics >Protecting Privacy and Security of Genomic Data in i2b2 with Homomorphic Encryption and Differential Privacy
【24h】

Protecting Privacy and Security of Genomic Data in i2b2 with Homomorphic Encryption and Differential Privacy

机译:通过同态加密和差分隐私保护i2b2中的基因组数据的隐私和安全

获取原文
获取原文并翻译 | 示例

摘要

Re-use of patients' health records can provide tremendous benefits for clinical research. Yet, when researchers need to access sensitive/identifying data, such as genomic data, in order to compile cohorts of well-characterized patients for specific studies, privacy and security concerns represent major obstacles that make such a procedure extremely difficult if not impossible. In this paper, we address the challenge of designing and deploying in a real operational setting an efficient privacy-preserving explorer for genetic cohorts. Our solution is built on top of the i2b2 (Informatics for Integrating Biology and the Bedside) framework and leverages cutting-edge privacy-enhancing technologies such as homomorphic encryption and differential privacy. Solutions involving homomorphic encryption are often believed to be costly and immature for use in operational environments. Here, we show that, for specific applications, homomorphic encryption is actually a very efficient enabler. Indeed, our solution outperforms prior work by enabling a researcher to securely compute simple statistics on more than 3,000 encrypted genetic variants simultaneously for a cohort of 5,000 individuals in less than 5 seconds with commodity hardware. To the best of our knowledge, our privacy-preserving solution is the first to also be successfully deployed and tested in a operation setting (Lausanne University Hospital).
机译:重复使用患者的健康记录可以为临床研究带来巨大的好处。但是,当研究人员需要访问敏感的/可识别的数据(例如基因组数据)以汇集特征明确的患者以进行特定研究时,隐私和安全问题成为主要障碍,这使该程序变得非常困难,即使不是不可能。在本文中,我们解决了在实际操作环境中设计和部署高效的遗传群体隐私保护浏览器的挑战。我们的解决方案建立在i2b2(整合生物学和床头信息学)框架的基础之上,并利用了尖端的隐私增强技术,例如同态加密和差异隐私。人们通常认为,涉及同态加密的解决方案在操作环境中使用起来昂贵且不成熟。在这里,我们表明,对于特定的应用程序,同态加密实际上是一个非常有效的促成因素。确实,我们的解决方案使研究人员能够在不到5秒钟的时间内使用商品硬件安全地计算3,000多个加密遗传变量的简单统计数据,从而胜过先前的工作。据我们所知,我们的隐私保护解决方案是第一个也在手术环境(洛桑大学医院)中成功部署和测试的解决方案。

著录项

  • 来源
  • 作者单位

    School of Computer and Communication Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland;

    School of Computer and Communication Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland;

    Service de Soutien à la Recherche Clinique, Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland;

    Service de Soutien à la Recherche Clinique, Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland;

    Service de Soutien à la Recherche Clinique, Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland;

    Service de Soutien à la Recherche Clinique, Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland;

    Service de Soutien à la Recherche Clinique, Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland;

    School of Computer and Communication Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Genomics; Bioinformatics; Encryption;

    机译:基因组学;生物信息学;加密;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号