首页> 外文期刊>IEE proceedings. Part G, Circuits, devices and systems >6H silicon carbide MOSFET modelling for high temperature analogueintegrated circuits (25-500°C)
【24h】

6H silicon carbide MOSFET modelling for high temperature analogueintegrated circuits (25-500°C)

机译:用于高温模拟集成电路(25-500°C)的6H碳化硅MOSFET建模

获取原文
获取原文并翻译 | 示例
           

摘要

The authors report on the effects of elevated ambient andnsubstrate temperatures (25-500°C) on the electrical characteristicsnof 6H polytype silicon carbide (SiC) MOSFETs. The work focuses primarilynon modelling the temperature variations of the large- and small-signalnparameters of the devices with a view to assessing their suitability fornhigh-temperature integrated electronics. These parameters includenthreshold voltages, leakage currents, body-bias effects, andnsmall-signal transconductances and output conductances. Where relevant,nthe authors' results are compared to silicon MOSFETs and GaAs MESFETs.nAbove 225°C, the parameter variations of their SiC MOSFETs,nincluding the observation of zero temperature coefficient (ZTC) drainncurrents, are qualitatively similar to those of Si MOSFETs and of GaAsnMESFETs. In contrast with silicon MOSFETs. However, the gatentransconductance (gm) and the channel mobility (Μ)nincrease with increasing temperature up to 225°C approximatelynbecause of a high interface state density. The ON/OFF current ratio ofntheir SIC MOSFETs is at least two orders of magnitude higher than for Sinand GaAs FETs above 200°C. Junction leakage current densitiesnmeasured up to 500°C are several orders of magnitude lower than innhigh quality Si and GaAs devices, as expected from the higher bandgapnenergy for their SiC material (≈3 eV). While the junctions retainedntheir electrical integrity, their MOSFETs displayed large gate-to-drainnleakage currents above 300°C, apparently due to an oxide reliabilitynproblem. Pin-to-pin package leakage is also observed above the samentemperature. Despite this partial form of damage, the authors believenthat their results confirm the expected potential of SIC MOSFETs fornintegrated circuit applications above 250°C. The data reported innthe paper, for this novel SIC process, are used to derive MOSFET modelsnand SPICE parameters for analogue IC design, and an NMOS operationalnamplifier (OPAMP) is presented which is expected to operate in the rangen25°C to 500°C, where silicon and GaAs technologies arenunsuitable
机译:作者报告了升高的环境温度和衬底温度(25-500°C)对6H多型碳化硅(SiC)MOSFET的电特性的影响。这项工作主要集中在不对设备的大信号和小信号参数的温度变化进行建模,以评估其对高温集成电子设备的适用性。这些参数包括阈值电压,泄漏电流,体偏置效应,小信号跨导和输出电导。在适当的情况下,将作者的结果与硅MOSFET和GaAs MESFET进行比较。n在225°C以上,其SiC MOSFET的参数变化(包括对零温度系数(ZTC)漏极电流的观察)在质量上与Si MOSFET和GaAsnMESFET。与硅MOSFET相反。然而,由于高的界面态密度,栅温度跨导(gm)和沟道迁移率(M)随温度升高至约225℃而增加。其SIC MOSFET的ON / OFF电流比比200°C以上的Sinand GaAs FET高至少两个数量级。 SiC器件(≈ 3 eV)具有更高的带隙能量,在高达500°C的温度下测得的结漏电流密度比高质量的Si和GaAs器件低几个数量级。尽管结保持了电气完整性,但它们的MOSFET在300°C以上显示了很大的栅漏电流,这显然是由于氧化物可靠性问题所致。在同一温度以上还会观察到引脚到引脚的封装泄漏。尽管存在这种局部损坏的形式,但作者认为,他们的结果证实了在250°C以上的集成电路应用中SIC MOSFET的预期潜力。本文针对该新型SIC工艺报告的数据用于推导MOSFET模型和SPICE参数以进行模拟IC设计,并提出了一种NMOS运算放大器(OPAMP),其预期工作温度范围为25°C至500°C,其中硅和砷化镓技术不合适

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号