首页> 外文期刊>IEE Proceedings. Part D, Control Theory and Applications >Feature-aided tracking with GMTI and HRR measurements via mixture density estimation
【24h】

Feature-aided tracking with GMTI and HRR measurements via mixture density estimation

机译:通过混合密度估算,借助GMTI和HRR测量进行特征辅助跟踪

获取原文
获取原文并翻译 | 示例

摘要

Tracking ground moving targets with ground moving target indicator and high resolution range (HRR) measurements is becoming increasingly important for many military and civilian applications. We first propose a new HRR information exploitation method using the technique of mixture density estimation. With this technique, features extracted from HRR profiles include not only peak locations and magnitudes, but also the information regarding how energy spreads around peaks. Therefore it is expected to increase significantly the feature discrimination power. We then develop a feature-aided tracking (FAT) algorithm that combines HRR features with traditional kinematic measurements in a probabilistic way. The algorithm does not require any a priori knowledge of target identifications. Simulation results are presented for both the HRR feature extraction method and the FAT algorithm.
机译:对于许多军事和民用应用而言,利用地面移动目标指示器和高分辨率范围(HRR)测量来跟踪地面移动目标变得越来越重要。我们首先提出一种使用混合密度估计技术的HRR信息开发新方法。通过这种技术,从HRR轮廓提取的特征不仅包括峰的位置和幅度,而且还包括有关能量如何在峰周围扩散的信息。因此,期望显着增加特征识别能力。然后,我们开发了一种特征辅助跟踪(FAT)算法,该算法以概率方式将HRR特征与传统运动学测量相结合。该算法不需要目标识别的任何先验知识。针对HRR特征提取方法和FAT算法均给出了仿真结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号