首页> 外文期刊>IAENG Internaitonal journal of computer science >Integrating Clustering Method in Compactly Supported Radial Basis Function for Surface Approximation
【24h】

Integrating Clustering Method in Compactly Supported Radial Basis Function for Surface Approximation

机译:紧支撑径向基函数的集成聚类方法用于表面逼近

获取原文
获取原文并翻译 | 示例

摘要

Radial basis function, one of the mesh-free methods, makes it convenient to interpolate and approximate high dimensional data points. Interpolation fits the data points exactly, whereas approximation fits the data points approximately. The approximation method is more appropriate for large and noisy data points in comparison to the interpolation method. Compactly supported radial basis function is extensively discussed in the literature of approximation theory. It also becomes popular as a result of its computational advantages. Hence, in this study, Wendland's compactly supported radial basis function is chosen. The main contribution of this paper is integrating the clustering procedures to determine the recommended number of reference points, which is expected to provide as few reference points as possible for surface approximation. Three bivariate test functions are selected to generate a moderately large amount of data points followed by the process of adding different levels of noise in order to observe the effectiveness of the proposed method. The results obtained are further confirmed and analysed through error analysis. Finally, the experimental results show that the surfaces are well approximated from the recommended number of reference points gained from the proposed method.
机译:径向基函数是无网格方法之一,可方便地插值和近似高维数据点。插值精确地拟合数据点,而近似值近似地拟合数据点。与插值方法相比,近似方法更适合于较大且嘈杂的数据点。逼近理论的文献中广泛讨论了紧支撑的径向基函数。由于其计算优势,它也变得流行。因此,在这项研究中,选择了Wendland的紧支撑径向基函数。本文的主要贡献是集成了聚类过程,以确定推荐的参考点数量,这有望为曲面逼近提供尽可能少的参考点。选择三个双变量测试函数以生成适量的数据点,然后进行添加不同级别的噪声的过程,以观察所提出方法的有效性。通过误差分析进一步确认并分析了获得的结果。最后,实验结果表明,从建议的方法获得的参考点的推荐数量可以很好地近似曲面。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号