首页> 外文期刊>Hydrological Processes >Modulating factors of hydrologic exchanges in a large-scale river reach: Insights from three-dimensional computational fluid dynamics simulations
【24h】

Modulating factors of hydrologic exchanges in a large-scale river reach: Insights from three-dimensional computational fluid dynamics simulations

机译:大型河段水文交换的调节因子:三维计算流体动力学模拟的启示

获取原文
获取原文并翻译 | 示例
           

摘要

Hydrologic exchange is a critical mechanism that shapes hydrological and biogeochemical processes along a river corridor. Because of limitations in field accessibility, computational demand, and complexities of geomorphology and subsurface geology, full three-dimensional modelling studies to quantify hydrologic exchange fluxes (HEFs) have been limited mostly to local-scale applications. At reach scales, although surface flow conditions and subsurface physical properties are well-known factors that modulate hydrologic exchanges, quantitative measures that can describe the effects of these factors on the strength and direction of such exchanges do not exist. To address this issue, we developed a one-way coupled surface and subsurface water flow model using the commercial computational fluid dynamics (CFD) software STARCCM+ and applied it to simulate HEFs in a 7-km long reach along the main stem of the Columbia River in the United States. The model was validated against flow velocity measurements from an acoustic Doppler current profiler in the river, vertical HEFs estimated from a set of temperature profilers installed across the riverbed, and simulations from a reactive transport model. The validated model then was employed to systematically investigate how HEFs could be influenced by surface water fluid dynamics, subsurface structures, and hydrogeological properties. Our results suggest that reach-scale HEFs are dominated primarily by the thickness of the riverbed alluvium layer, and then by the alluvium permeability, the depth of the underlying impermeable layer, and the pressure boundary condition. Our results also elucidate the scale dependence of HEFs on fluid dynamics that can be captured only by three-dimensional CFD models. That is, while the net HEFs over the entire 7-km domain are not significantly influenced by surface water dynamics pressure, the dynamic pressure induced by fluid dynamics can lead to more than 15% in net HEFs for a river section of a few hundred metres.
机译:水文交换是影响河流走廊水文和生物地球化学过程的关键机制。由于现场可访问性,计算需求以及地貌学和地下地质学的复杂性的限制,用于量化水文交换通量(HEF)的完整三维建模研究主要限于局部应用。在规模上,尽管地表流动条件和地下物理性质是调节水文交换的众所周知的因素,但尚不存在能够描述这些因素对这种交换的强度和方向的影响的定量方法。为了解决这个问题,我们使用商业计算流体动力学(CFD)软件STARCCM +开发了一种单向耦合的地表和地下水流模型,并将其用于模拟沿着哥伦比亚河主干河长达7公里的HEF。在美国。该模型针对河流中的声学多普勒电流剖面仪进行的流速测量,沿河床安装的一组温度剖面仪估算的垂直HEF以及无功运输模型的仿真进行了验证。然后,使用经过验证的模型来系统地研究HEF如何受到地表水流体动力学,地下结构和水文地质特性的影响。我们的结果表明,达到规模的HEF主要由河床冲积层的厚度决定,然后由冲积层的渗透性,下面的不渗透层的深度和压力边界条件决定。我们的研究结果还阐明了HEF对流体动力学的尺度依赖性,而流体动力学只能由三维CFD模型捕获。也就是说,虽然整个7公里范围内的净HEF不受地表水动力学压力的显着影响,但由流体动力学引起的动压可导致数百米河段的净HEF超过15%。 。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号