首页> 外文期刊>Hydrological Processes >Updating of snow depletion curve with remote sensing data
【24h】

Updating of snow depletion curve with remote sensing data

机译:利用遥感数据更新除雪曲线

获取原文
获取原文并翻译 | 示例

摘要

A method for using remotely sensed snow cover information in updating a hydrological model is developed, based on Bayes' theorem. A snow cover mass balance model structure adapted to such use of satellite data is specified, using a parametric snow depletion curve in each spatial unit to describe the subunit variability in snow storage. The snow depletion curve relates the accumulated melt depth to snow-covered area, accumulated snowmelt runoff volume, and remaining snow water equivalent. The parametric formulation enables updating of the complete snow depletion curve, including mass balance, by satellite data on snow coverage. Each spatial unit (i.e. grid cell) in the model maintains a specific depletion curve state that is updated independently. The uncertainty associated with the variables involved is formulated in terms of a joint distribution, from which the joint expectancy (mean value) represents the model state. The Bayesian updating modifies the prior (pre-update) joint distribution into a posterior, and the posterior joint expectancy replaces the prior as the current model state. Three updating experiments are run in a 2400 km~2 mountainous region in Jotunheimen, central Norway (61°N, 9°E) using two Landsat 7 ETM+ images separately and together. At 1 km grid scale in this alpine terrain, three parameters are needed in the snow depletion curve. Despite the small amount of measured information compared with the dimensionality of the updated parameter vector, updating reduces uncertainty substantially for some state variables and parameters. Parameter adjustments resulting from using each image separately differ, but are positively correlated. For all variables, uncertainty reduction is larger with two images used in conjunction than with any single image. Where the observation is in strong conflict with the prior estimate, increased uncertainty may occur, indicating that prior uncertainty may have been underestimated.
机译:基于贝叶斯定理,提出了一种利用遥感积雪信息更新水文模型的方法。使用每个空间单位中的参数化雪耗竭曲线来描述积雪中亚单位的可变性,从而确定一种适合于卫星数据使用的积雪质量平衡模型结构。降雪曲线将累积的融化深度与积雪面积,累积的融雪径流量和剩余雪水当量相关联。通过参数公式,可以通过有关积雪的卫星数据更新完整的积雪损耗曲线,包括质量平衡。模型中的每个空间单位(即网格单元)都保持特定的消耗曲线状态,该状态会独立更新。与涉及的变量相关联的不确定性以联合分布的形式表示,联合期望值(均值)从联合分布中表示模型状态。贝叶斯更新将先验(更新前)关节分布修改为后验,而后验关节期望值将先验替换为当前模型状态。在挪威中部Jotunheimen(61°N,9°E)的2400 km〜2山区中使用两个Landsat 7 ETM +图像分别进行了三个更新实验。在此高山地形中,在1 km的网格比例下,雪消耗曲线中需要三个参数。尽管与更新后的参数向量的维数相比,所测得的信息量较小,但更新会大幅降低某些状态变量和参数的不确定性。由于分别使用每个图像而导致的参数调整会有所不同,但呈正相关。对于所有变量,结合使用的两个图像的不确定性降低要比任何单个图像大。如果观测值与先前的估计存在强烈冲突,则不确定性可能会增加,这表明先前的不确定性可能被低估了。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号