首页> 外文期刊>Hydrological Processes >Development of a support-vector-machine-based model for daily pan evaporation estimation
【24h】

Development of a support-vector-machine-based model for daily pan evaporation estimation

机译:基于支持向量机的每日锅蒸发量估算模型的开发

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

Evaporation estimation is an important issue in water resources management. In this article, a four-season model with optimalninput combination is proposed to estimate the daily evaporation. First, the model based on support vector machine (SVM)ncoupled with an input determination process is used to determine the optimal combination of input variables. Second, ancomparison of the SVM-based model with the model based on back-propagation network (BPN) is made to demonstrate thensuperiority of the SVM-based model. In addition, season data are used to construct the SVM-based four-season model to furthernimprove the daily evaporation estimation. An application is conducted to demonstrate the performance of the proposed model.nResults show that the SVM-based model can select the optimal input combination with physical mechanism. The SVM-basednmodel is more appropriate than the BPN-based model because of its higher accuracy, robustness and efficiency. Moreover, thenimprovement due to the use of the four-season model increases from 3.22% to 15.30% for RMSE and from 4.84% to 91.16% fornCE, respectively. In conclusion, the SVM-based model coupled with the proposed input determination process should be used tonselect input variables. The proposed four-season SVM-based model with optimal input combination is recommended as annalternative to the existing models. The proposed modelling technique is expected to be useful to improve the daily evaporationnestimation. Copyright © 2012 John Wiley & Sons, Ltd.
机译:蒸发量估算是水资源管理中的重要问题。本文提出了一种具有最优输入组合的四季节模型来估计日蒸发量。首先,将基于支持向量机(SVM)的模型与输入确定过程相结合,以确定输入变量的最佳组合。其次,将基于SVM的模型与基于反向传播网络(BPN)的模型进行了比较,以证明基于SVM的模型的优越性。此外,季节数据用于构建基于SVM的四个季节模型,以进一步改善每日蒸发量估算值。结果表明,基于SVM的模型可以通过物理机制选择最优的输入组合。基于SVM的模型比基于BPN的模型更合适,因为它具有更高的准确性,鲁棒性和效率。而且,由于使用了四个季节的模型,RMSE的改进分别从3.22%增加到15.30%,forCE则从4.84%增加到91.16%。总之,应该将基于SVM的模型与建议的输入确定过程结合使用,以选择输入变量。建议将所建议的基于四个季节的SVM模型与最佳输入组合作为现有模型的替代。预期所提出的建模技术将有助于改善每日蒸发量估计。版权所有©2012 John Wiley&Sons,Ltd.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号