首页> 外文期刊>Human-Machine Systems, IEEE Transactions on >Mitigating Behavioral Variability for Mouse Dynamics: A Dimensionality-Reduction-Based Approach
【24h】

Mitigating Behavioral Variability for Mouse Dynamics: A Dimensionality-Reduction-Based Approach

机译:缓解鼠标动力学的行为变异性:一种基于降维的方法

获取原文
获取原文并翻译 | 示例

摘要

Mouse dynamics is the process of identifying individual users on the basis of their mouse operating behaviors. Mouse dynamics analysis techniques do not provide an acceptable level of accuracy, perhaps due to behavioral variability. This study presents a dimensionality-reduction-based approach to mitigate the behavioral variability of mouse dynamics and improve the performance of mouse-dynamics-based continuous authentication. Variability was measured over the schematic features and motor-skill features extracted from each mouse behavior data session. A unified framework of employing dimensionality reduction methods (Multidimensional Scaling, Laplacian Eigenmap, Isometric Feature Mapping, and Local Linear Embedding) was developed to reduce behavioral variability by obtaining predominant characteristics from the original feature space. Classification techniques (Random Forest, Support Vector Machine, Neural Network, and Nearest Neighbor) were applied to the transformed feature space to perform the authentication task. Analyses were conducted using data from 840 half-hour sessions of 28 participants. Results indicated that for sufficiently long sequences, the transformed feature spaces had much less variability and the corresponding authentication performance was better than the original feature space with improvements of the false-acceptance rate by 89.6% and of the false-rejection rate by 77.4% in some cases. Additionally, an investigation of the relationships between variability and authentication error rates and detection time indicated that the variability and authentication error rates reduce greatly with the increase of detection time. For the data collected, the approach fared better than the state-of-the-art approaches. These findings suggest that variability reduction could improve mouse dynamics, so it may enhance current authentication mechanisms.
机译:鼠标动态是根据单个用户的鼠标操作行为来识别他们的过程。鼠标动力学分析技术不能提供可接受的准确性,这可能是由于行为的可变性所致。这项研究提出了一种基于降维的方法,以减轻鼠标动力学行为的变异性并提高基于鼠标动力学的连续身份验证的性能。测量了从每个鼠标行为数据会话提取的原理图特征和运动技能特征的变异性。开发了使用降维方法(多维比例缩放,拉普拉斯特征图,等距特征映射和局部线性嵌入)的统一框架,以通过从原始特征空间中获取主要特征来减少行为可变性。分类技术(随机森林,支持向量机,神经网络和最近邻)被应用于变换后的特征空间以执行认证任务。使用来自28位参与者的840个半小时课程的数据进行了分析。结果表明,对于足够长的序列,变换后的特征空间的变异性要小得多,并且相应的身份验证性能要优于原始特征空间,从而使错误接受率提高了89.6%,错误拒绝率提高了77.4%。某些情况下。另外,对变异性和认证错误率与检测时间之间关系的研究表明,变异性和认证错误率随着检测时间的增加而大大降低。对于收集的数据,该方法要比最新方法更好。这些发现表明减少变异性可以改善鼠标的动态性,因此可以增强当前的身份验证机制。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号