首页> 外文期刊>Human-Machine Systems, IEEE Transactions on >A Time-Efficient Approach for Decision-Making Style Recognition in Lane-Changing Behavior
【24h】

A Time-Efficient Approach for Decision-Making Style Recognition in Lane-Changing Behavior

机译:一种时间效率的在线改变行为中决策风格识别方法

获取原文
获取原文并翻译 | 示例

摘要

Fast recognition of a driver's decision-making style when changing lanes plays a pivotal role in a safety-oriented and personalized vehicle control system design. This article presents a time-efficient recognition method by integrating k-means clustering (k-MC) with the K-nearest neighbor (KNN) algorithm, called kMC-KNN. Mathematical morphology is implemented to automatically label the decision-making data into three styles (moderate, vague, and aggressive), while the integration of k-MC and the KNN algorithm helps to improve the recognition speed and accuracy. Our developed mathematical-morphology-based clustering algorithm is then validated by a comparison with agglomerative hierarchical clustering. Experimental results demonstrate that the developed kMC-KNN method, in comparison with the traditional KNN algorithm, can shorten the recognition time by more than 72.67% with a recognition accuracy of 90-98%. In addition, our developed kMC-KNN method also outperforms a support vector machine in terms of recognition accuracy and stability. The developed time-efficient recognition approach would have great application potential for in-vehicle embedded solutions with restricted design specifications.
机译:在更换车道时,快速识别驾驶员的决策风格在面向安全和个性化的车辆控制系统设计中起着重要作用。本文通过将K-mcS聚类(K-MC)与K-CircleS邻(KNN)算法集成,称为KMC-KNN,本文提出了一种时间有效的识别方法。实施数学形态学以自动将决策数据标记为三种风格(中等,模糊和攻击性),而K-MC和KNN算法的集成有助于提高识别速度和精度。然后通过与附聚层间聚类的比较验证了基于数学形态的聚类算法。实验结果表明,所研制的KMC-KNN方法中,在与传统的KNN算法比较,可以由多于72.67%缩短识别时间与90-98%的识别精度。此外,我们开发的KMC-KNN方法还优于识别准确性和稳定性的支持向量机。开发的时间效率识别方法将具有较大的具有限制设计规范的车载嵌入式解决方案的应用潜力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号