首页> 外文期刊>Human-computer interaction >Nomadic Input on Mobile Devices: The Influence of Touch Input Technique and Walking Speed on Performance and Offset Modeling
【24h】

Nomadic Input on Mobile Devices: The Influence of Touch Input Technique and Walking Speed on Performance and Offset Modeling

机译:移动设备上的游牧输入:触摸输入技术和步行速度对性能和偏移建模的影响

获取原文

摘要

In everyday life, people use their mobile phones on-the-go with different walking speeds and with different touch input techniques. Unfortunately, much of the published research in mobile interaction does not quantify the influence of these variables. In this article, we analyze the influence of walking speed, gait pattern, and input techniques on commonly used performance parameters like error rate, accuracy, and tapping speed, and we compare the results to the static condition. We examine the influence of these factors on the machine learned offset model used to correct user input, and we make design recommendations. The results show that all performance parameters degraded when the subject started to move, for all input techniques. Index finger pointing techniques demonstrated overall better performance compared to thumb-pointing techniques. The influence of gait phase on tap event likelihood and accuracy was demonstrated for all input techniques and all walking speeds. Finally, it was shown that the offset model built on static data did not perform as well as models inferred from dynamic data, which indicates the speed-specific nature of the models. Also, models identified using specific input techniques did not perform well when tested in other conditions, demonstrating the limited validity of offset models to a particular input technique. The model was therefore calibrated using data recorded with the appropriate input technique, at 75% of preferred walking speed, which is the speed to which users spontaneously slow down when they use a mobile device and which presents a trade-off between accuracy and usability. This led to an increase in accuracy compared to models built on static data. The error rate was reduced between 0.05% and 5.3% for landscape-based methods and between 5.3% and 11.9% for portrait-based methods.
机译:在日常生活中,人们以不同的步行速度和不同的触摸输入技术随时随地使用手机。不幸的是,许多有关移动交互的已发表研究并未量化这些变量的影响。在本文中,我们分析了步行速度,步态模式和输入技术对常用性能参数(如错误率,准确性和拍击速度)的影响,并将结果与​​静态条件进行了比较。我们研究了这些因素对用于校正用户输入的机器学习偏移模型的影响,并提出了设计建议。结果表明,对于所有输入技术,当对象开始移动时,所有性能参数都会降低。与拇指指点技术相比,食指指点技术表现出总体上更好的性能。在所有输入技术和所有步行速度下,步态阶段对敲击事件可能性和准确性的影响都得到了证明。最后,结果表明,基于静态数据的偏移模型的性能不如从动态数据推断的模型好,这表明模型具有特定于速度的性质。同样,使用特定输入技术识别的模型在其他条件下进行测试时效果也不佳,这表明偏移模型对特定输入技术的有效性有限。因此,该模型是使用以适当的输入技术记录的数据进行校准的,速度为首选步行速度的75%,这是用户在使用移动设备时自发减速的速度,并在准确性和可用性之间做出了权衡。与基于静态数据的模型相比,这导致准确性提高。对于基于横向的方法,错误率降低了0.05%至5.3%;对于基于纵向的方法,错误率降低了5.3%至11.9%。

著录项

  • 来源
    《Human-computer interaction》 |2016年第6期|420-471|共52页
  • 作者单位

    Univ Split, Fac Elect Engn Mech Engn & Naval Architecture, Split, Croatia;

    Univ Glasgow, Inference Dynam & Interact Res Grp, Sch Comp Sci, Glasgow G12 8QQ, Lanark, Scotland;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号