首页> 外文期刊>Higher-order and symbolic computation >Expressing combinatory reduction systems derivations in the rewriting calculus
【24h】

Expressing combinatory reduction systems derivations in the rewriting calculus

机译:在重写演算中表达组合归约系统的派生

获取原文
获取原文并翻译 | 示例

摘要

The last few years have seen the development of the rewriting calculus (also called rho-calculus or ρ-calculus) that uniformly integrates first-order term rewriting and the λ-calculus. The combination of these two latter formalisms has been already handled either by enriching first-order rewriting with higher-order capabilities, like in the Combinatory Reduction Systems (CRS), or by adding to the λ-calculus algebraic features. The various higher-order rewriting systems and the rewriting calculus share similar concepts and have similar applications, and thus, it is important to compare these formalisms to better understand their respective strengths and differences. We show in this paper that we can express Combinatory Reduction Systems derivations in terms of rewriting calculus derivations. The approach we present is based on a translation of each possible CRS-reduction into a corresponding ρ-reduction. Since for this purpose we need to make precise the matching used when evaluating CRS, the second contribution of the paper is to present an original matching algorithm for CRS terms that uses a simple term translation and the classical matching of lambda terms.
机译:在最近几年中,重写演算(也称为rho-演算或ρ-演算)得到了发展,该演算统一了一阶项重写和λ演算。后两种形式主义的组合已经通过使用诸如组合归约系统(CRS)中的高阶功能来丰富一阶重写或通过添加λ微积分的代数特征来解决。各种高阶重写系统和重写演算具有相似的概念并且具有相似的应用,因此,重要的是比较这些形式主义以更好地理解它们各自的优势和差异。我们在本文中证明,我们可以根据重写演算的派生来表达组合归约系统的派生。我们提出的方法基于将每个可能的CRS折减转换为相应的ρ折减。由于为此目的,我们需要精确评估在评估CRS时使用的匹配,因此本文的第二个贡献是提出一种针对CRS术语的原始匹配算法,该算法使用简单的术语翻译和lambda术语的经典匹配。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号