首页> 外文期刊>High Altitude Medicine & Biology >Limiting Factors of Maximal Oxygen Uptake at Altitude
【24h】

Limiting Factors of Maximal Oxygen Uptake at Altitude

机译:高原最大摄氧量的限制因素

获取原文
获取原文并翻译 | 示例
           

摘要

Tnhe authors of this interesting article (Calbet andnLundby, 2009) conclude in the abstract that ‘‘hypoxianreduces Vo2max because it limits O2 diffusion in the lung.’’ Innmy opinion they ascribe too little importance to convectionalnpulmonary transport and too much to the diffusion pressurengradient from the lungs to the mitochondria. A main effect ofnaltitude is the reduction of molecule number in each liter ofninspired air. For simplification, consider an ascent to 5500 mnthat reduces barometric pressure to one-half. To transport annequal amount of oxygen into the alveoli as at sea level, thenventilation at BTPS conditions has to be doubled, corresponding to unchanged Ve at STPD. This is clearly impossiblenat high performance levels, such as Vo2max. Even if possible,nthe oxygen pressure in inspired air remains halved, whilenPio2 u0001 Pao2 must be equal to that at sea level for unchangednoxygen uptake. Only an increased ventilation at STPD cannincrease the mass transport of this gas, increasing again Pao2nto partly reestablish the pulmonary diffusion pressure. This isnpossible only at very moderate altitudes during hard exercise.nThe next step, oxygen diffusion from the alveoli into blood,ndepends on the difference between Pao2 and mean capillarynPo2ntimes diffusion capacity. Since the lower limit of venousnPo2 at exhausting exercise (*10 mmHg; Sutton et al., 1988)ncan hardly be reduced, only an increase in diffusion capacity,neither by increasing lung capillary or erythrocyte area, improves oxygen transport. All additional acclimatization effects in the rest of the body are mitigating deleteriousnconsequences of lung failure, but cannot compensate fornthem. Blunting of peak Q is not ‘‘contributing to the limitationnof Vo2max,’’ (Calbet and Lundby, 2009) if all oxygen diffusedninto the blood can be transported.
机译:这篇有趣的文章的作者(Calbet和nLundby,2009年)摘要得出结论:“低氧可减少Vo2max,因为它限制了O2在肺中的扩散。”在我看来,他们认为对流肺运输的重要性太小,而将对流肺的迁移的重要性归因于太高。肺到线粒体。态度的主要作用是减少每升吸入的空气中的分子数量。为了简化起见,考虑上升到5500 mn,将大气压降低一半。为了在海平面上将等量的氧气输送到肺泡中,则必须将BTPS条件下的换气量加倍,这对应于STPD处的Ve不变。在高性能水平(例如Vo2max)上,这显然是不可能的。即使可能,吸入空气中的氧气压力仍会减半,而为了保持不变的氧气吸收,nPio2 u0001 Pao2必须等于海平面的氧气压力。只有在STPD处增加通风量才能增加这种气体的质量传输,从而再次增加Pao2n以部分重新建立肺扩散压力。仅在艰苦运动中在非常中等的海拔高度上才有可能。n下一步,氧气从肺泡扩散到血液中,n取决于Pao2和平均毛细管nPo2n扩散能力的差。由于力竭运动时venousnPo2的下限(* 10 mmHg; Sutton等,1988)几乎无法降低,因此仅通过增加肺毛细血管或红细胞面积来增加扩散能力就可以改善氧的转运。身体其余部分的所有其他适应性作用都在减轻肺衰竭的有害后果,但不能弥补前遗症。如果所有可以扩散到血液中的氧气都能将Q峰钝化,而不是“助长Vo2max的局限性”(Calbet和Lundby,2009年)。

著录项

  • 来源
    《High Altitude Medicine & Biology》 |2010年第1期|p.73|共1页
  • 作者

    Dieter Böning;

  • 作者单位

    Dieter BöningCharité–Universitätsmedizin BerlinSportmedizin, Department of PhysiologyArnimallee 22Berlin,Germany 12209;

  • 收录信息 美国《科学引文索引》(SCI);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号