首页> 外文期刊>Heat transfer >Thermal slip and radiative heat transfer effects on electro-osmotic magnetonanoliquid peristaltic propulsion through a microchannel
【24h】

Thermal slip and radiative heat transfer effects on electro-osmotic magnetonanoliquid peristaltic propulsion through a microchannel

机译:通过微通道对电渗磁纳米液体蠕动推进的热滑移和辐射热传递效应

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

A mathematical study is described to examine the concurrent influence of thermal radiation and thermal wall slip on the dissipative magnetohydrodynamic electro-osmotic peristaltic propulsion of a viscous nanoliquid in an asymmetric microchannel under the action of an axial electric field and transverse magnetic field. Convective boundary conditions are incorporated in the model and the case of forced convection is studied, that is, thermal and species (nanoparticle volume fraction) buoyancy forces neglected. The heat source and sink effects are also included and the diffusion flux approximation is employed for radiative heat transfer. The transport model comprises the continuity, momentum, energy, nanoparticle volume fraction, and electric potential equations with appropriate boundary conditions. These are simplified by negating the inertial forces and invoking the Debye-Hueckel linearization. The resulting governing equations are reduced into a system of nondimensional simultaneous ordinary differential equations, which are solved analytically. Numerical evaluation is conducted with symbolic software (MATLAB). The impact of different control parameters (Hartmann number, electro-osmosis parameter, slip parameter, Helm-holtz-Smoluchowski velocity, Biot numbers, Brinkman number, thermal radiation, and Prandtl number) on the heat, mass, and momentum characteristics (velocity, temperature, Nusselt number, etc) are presented graphically. Increasing Brinkman number is found to elevate temperature magnitudes. For positive Helmholtz-S-moluchowski velocity (reverse axial electrical field) temperature is strongly reduced, whereas for negative Helm-holtz-Smoluchowski velocity (aligned axial electrical field), it is significantly elevated. With increasing thermal slip, nanoparticle volume fraction is also increased. Heat source elevates temperatures, whereas heat sink depresses them, across the microchannel span. Conversely, heat sink elevates nanoparticle volume fraction, whereas heat source decreases it. Increasing Hartmann (magnetic) parameter and Prandtl number enhance the nanoparticle volume fraction. Furthermore, with increasing radiation parameter, the Nusselt number is reduced at the extremities of the microchannel, whereas it is elevated at intermediate distances. The results reported provide a good insight into biomimetic energy systems exploiting electromagnetics and nanotechnology, and, furthermore, they furnish a useful benchmark for experimental and more advanced computational multiphysics simulations.
机译:描述了一种数学研究,以研究在轴向电场和横向磁场的作用下,热辐射和热壁滑移对不对称微通道中粘性纳米液体的耗散磁流体动力电渗透蠕动推进的同时影响。将对流边界条件纳入模型,并研究了强制对流的情况,即忽略了热力和物质(纳米颗粒体积分数)的浮力。还包括热源和吸收效应,并且采用扩散通量近似进行辐射热传递。传输模型包括具有适当边界条件的连续性,动量,能量,纳米颗粒体积分数和电势方程。通过消除惯性力并调用Debye-Hueckel线性化可以简化这些过程。由此产生的控制方程被简化为一个无量纲联立常微分方程组,可以对其进行解析求解。使用符号软件(MATLAB)进行数值评估。不同控制参数(Hartmann数,电渗参数,滑移参数,Helm-holtz-Smoluchowski速度,Biot数,Brinkman数,热辐射和Prandtl数)对热量,质量和动量特性(速度,温度,努塞尔数等)以图形方式显示。发现增加的布林克曼数会提高温度幅度。对于正Helmholtz-S-moluchowski速度(反向轴向电场),温度会大大降低,而对于负Helm-holtz-Smoluchowski速度(对齐的轴向电场),温度会明显升高。随着热滑移的增加,纳米颗粒的体积分数也增加。热源在整个微通道范围内升高温度,而散热器则降低温度。相反,散热器增加了纳米颗粒的体积分数,而热源则降低了它。增加Hartmann(磁性)参数和Prandtl数会增加纳米粒子的体积分数。此外,随着辐射参数的增加,努塞尔数在微通道的末端减少,而在中间距离处则增加。报告的结果为利用电磁学和纳米技术的仿生能源系统提供了很好的见识,此外,它们为实验和更高级的计算多物理场仿真提供了有用的基准。

著录项

  • 来源
    《Heat transfer》 |2019年第7期|2882-2908|共27页
  • 作者单位

    Department of Mathematics Avvaiyar Government College for Women Karaikal Puducherry-U.T. India;

    Department of Mathematics SRM Institute of Science and Technology Kattankulathur Tamil Nadu India;

    Department of Mathematics National Institute of Technology Uttarakhand India;

    Department of Mechanical/Aeronautical Engineering Salford University Manchester UK;

  • 收录信息 美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号