...
首页> 外文期刊>Heat and mass transfer >Connective heat transfer in engine coolers influenced by electromagnetic fields
【24h】

Connective heat transfer in engine coolers influenced by electromagnetic fields

机译:发动机冷却器中的对流换热受电磁场影响

获取原文
获取原文并翻译 | 示例

摘要

In engine coolers of off-highway vehicles, convective heat transfer at the coolant side limits both efficiency and performance density of the apparatus. Here, due to restrictions in construction and design, backwater areas and stagnation regions cannot be avoided. Those unwanted changes in flow characteristics are mainly triggered by flow deflections and sudden cross-sectional expansions. In application, mixtures of water and glysantine are used as appropriate coolants. Such coolants typically show an electrical conductivity of a few S/m. Coolant flow and convective heat transfer can then be controlled using Lorentz forces. These body forces are generated within the conducting fluid by the interactions of an electrical current density and a localized magnetic field, both of which are externally superimposed. In future application, this could be achieved by inserting electrodes in the cooler wall and a corresponding arrangement of permanent magnets. In this paper we perform numerical simulations of such magnetohydrodynamic flow in three model geometries that frequently appear in engine cooling applications: Carnot-Borda diffusor, 90° bend, and 180° bend. The simulations are carried out using the software package ANSYS Fluent. The present study demonstrates that, depending on the electromagnetic interaction parameter and the specific geometric arrangement of electrodes and magnetic field, Lorentz forces are suitable to break up eddy waters and separation zones and thus significantly increase convective heat transfer in these areas. Furthermore, the results show that hydraulic pressure losses can be reduced due to the pumping action of the Lorentz forces.
机译:在非公路车辆的发动机冷却器中,冷却剂侧的对流传热限制了设备的效率和性能密度。在此,由于结构和设计上的限制,无法避免死水区域和停滞区域。流动特性的那些不必要的变化主要是由流动变形和突然的横截面膨胀引起的。在应用中,水和甘氨酸的混合物用作合适的冷却剂。这种冷却剂通常显示出几S / m的电导率。然后可以使用洛伦兹力来控制冷却剂流量和对流传热。这些体力通过电流密度和局部磁场的相互作用在导电流体内产生,这两者在外部叠加。在将来的应用中,这可以通过在冷却器壁中插入电极和相应的永磁体布置来实现。在本文中,我们对发动机冷却应用中经常出现的三种模型几何形状中的此类磁流体流动进行数值模拟:卡诺-博达扩散器,90°弯曲和180°弯曲。使用软件包ANSYS Fluent进行仿真。本研究表明,根据电磁相互作用参数以及电极和磁场的特定几何排列,洛伦兹力适用于破坏涡流水和分离区,从而显着增加这些区域的对流换热。此外,结果表明,由于洛伦兹力的泵送作用,可以减少液压损失。

著录项

  • 来源
    《Heat and mass transfer 》 |2018年第8期| 2599-2605| 共7页
  • 作者

    C. Karcher; J. Kühndel;

  • 作者单位

    Institute for Thermodynamics and Fluid Mechanics, Technische Universität Ilmenau;

    Institute for Thermodynamics and Fluid Mechanics, Technische Universität Ilmenau,MAHLE Industrial Thermal Systems GmbH & Co. KG;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号