首页> 外文期刊>Graphs and Combinatorics >Circuits and Cocircuits in Regular Matroids
【24h】

Circuits and Cocircuits in Regular Matroids

机译:常规拟阵中的电路和共路

获取原文
获取原文并翻译 | 示例

摘要

A classical result of Dirac's shows that, for any two edges and any n−2 vertices in a simple n-connected graph, there is a cycle that contains both edges and all n−2 of the vertices. Oxley has asked whether, for any two elements and any n−2 cocircuits in an n-connected matroid, there is a circuit that contains both elements and that has a non-empty intersection with all n−2 of the cocircuits. By using Seymour's decomposition theorem and results of Oxley and Denley and Wu, we prove that a slightly stronger property holds for regular matroids.
机译:狄拉克(Dirac)的经典结果表明,对于简单的n个连通图中的任意两个边和任何n-2顶点,存在一个包含边和两个顶点的所有n-2的循环。奥克斯利(Oxley)曾问过,对于连接n的拟阵中的任何两个元素和任何n-2共同电路,是否存在一个包含两个元素并且与所有n-2个共同电路具有非空相交的电路。通过使用西摩的分解定理以及Oxley和Denley和Wu的结果,我们证明了正规拟阵的性质稍强。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号