首页> 外文期刊>Graphs and Combinatorics >Orientations, Lattice Polytopes, and Group Arrangements II: Modular and Integral Flow Polynomials of Graphs
【24h】

Orientations, Lattice Polytopes, and Group Arrangements II: Modular and Integral Flow Polynomials of Graphs

机译:方向,格多边形和组安排II:图形的模块化和积分流多项式

获取原文
获取原文并翻译 | 示例

摘要

We study modular and integral flow polynomials of graphs by means of subgroup arrangements and lattice polytopes. We introduce an Eulerian equivalence relation on orientations, flow arrangements, and flow polytopes; and we apply the theory of Ehrhart polynomials to obtain properties of modular and integral flow polynomials. The emphasis is on the geometrical treatment through subgroup arrangements and Ehrhart polynomials. Such viewpoint leads to a reciprocity law on the modular flow polynomial, which gives rise to an interpretation on the values of the modular flow polynomial at negative integers and answers a question by Beck and Zaslavsky.
机译:我们通过子组布置和点阵多拓扑来研究图的模块化和积分流多项式。我们介绍了方向,流向和流多面体的欧拉对等关系;并且我们应用Ehrhart多项式的理论来获得模数和积分流多项式的性质。重点是通过子组布置和Ehrhart多项式进行几何处理。这种观点导致了关于模数流多项式的互易定律,这引起了对模数流多项式在负整数处的值的解释,并回答了贝克和扎斯拉夫斯基的问题。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号