首页> 外文期刊>Granular Computing >An incremental attribute reduction approach based on knowledge granularity for incomplete decision systems
【24h】

An incremental attribute reduction approach based on knowledge granularity for incomplete decision systems

机译:基于知识粒度对不完整决策系统的增量属性还原方法

获取原文
获取原文并翻译 | 示例

摘要

Attribute reduction is a core issue in rough set theory. In recent years, with the fast development of data processing tools, information systems may increase quickly in objects over time. How to update attribute reducts efficiently becomes more and more important. Although some approaches have been proposed, they are used for complete decision systems. There are relatively few studies on incremental attribute reduction for incomplete decision systems. We introduce knowledge granularity, that can be obtained by the tolerance classes, to measure the uncertainty in incomplete decision systems. Furthermore, we propose incremental attribute reduction algorithms for incomplete decision systems when adding multiple objects and when deleting multiple objects, respectively. Finally, experimental results show that the proposed incremental approach is effective and efficient to update attribute reducts with the variation of objects in incomplete decision systems.
机译:属性减少是粗糙集理论中的核心问题。近年来,随着数据处理工具的快速发展,信息系统可能随着时间的推移在对象中迅速增加。如何更新属性减少有效地变得越来越重要。虽然已经提出了一些方法,但它们用于完整的决策系统。对不完全决策系统的增量属性降低的研究相对较少。我们介绍了知识粒度,可以通过公差类获得,以测量不完全决策系统的不确定性。此外,我们在添加多个对象时以及删除多个对象时,我们提出了不完整决策系统的增量属性缩减算法。最后,实验结果表明,提出的增量方法是有效且有效的,以更新属性减少,在不完整决策系统中的对象的变化。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号