首页> 外文期刊>GIScience & remote sensing >Spatio-Temporal Reconstruction of MODIS NDVI by Regional Land Surface Phenology and Harmonic Analysis of Time-Series
【24h】

Spatio-Temporal Reconstruction of MODIS NDVI by Regional Land Surface Phenology and Harmonic Analysis of Time-Series

机译:区域土地面积椎间面积脊椎素骨椎间疗法及时序列的时空重建MODIS NDVI

获取原文
获取原文并翻译 | 示例

摘要

Satellite-derived Normalized Difference Vegetation Index (NDVI) is frequently obstructed by adverse atmospheric components resulting in data gaps in time series. The harmonic analysis of time series (HANTS) algorithm is a widely used technique to reconstruct missing NDVI time series. However, due to restriction of HANTS to act within temporal dimension, its direct application is bound to endure practical problems in spatiotemporal reconstruction due to large data gaps. This study proposes Moving Offset Method (MOM), a novel prefilling method applied on NDVI time series prior to application of HANTS. MOM restores the missing NDVI time series by assuming that it tends to follow a reference pattern of land surface phenology (NDVIref). The NDVIref is prepared by using a recursive search and fill algorithm (SFA) for data availability without null values. It restores null values in NDVIref at a pixel by using coefficients of linear regression with NDVIref at another pixel having identical conditions. Finally, the prefilling is prior to application of HANTS. The proposed approach is demonstrated by using MODIS 16-daily time series data for Northeast India and Bhutan region which is covered with frequent seasonal clouds. Besides direct application of HANTS, it is also compared with similar approaches which includes prefilling by inverse distance weighted (IDW) and cubic spline, prior to application of HANTS. The fitting indicators, overall reconstruction error (ORE) and normalized noise related error (NNRE) are found to be best for proposed approach in spatiotemporal comparison. Also, restoration of seasonality trait the NDVI time series better in the proposed approach. This approach is concluded to be an enhancement for HANTS that could be helpful in improving quality of NDVI reconstruction for regions with frequent seasonal obstructions around the globe.
机译:卫星衍生的归一化差异植被指数(NDVI)经常受到不良大气组件的阻碍,导致时间序列中的数据间隙。时间序列(Hants)算法的谐波分析是一种广泛使用的技术来重建缺失的NDVI时间序列。然而,由于汉庭在时间维度内采取行动的限制,其直接应用必须由于大数据差距而持续存在时尚重建中的实际问题。本研究提出了移动偏移方法(MOM),在宿舍施用之前应用于NDVI时间序列的新型预填充方法。 MOM通过假设往往遵循陆地表面酚类(NDViREF)的参考模式来恢复缺失的NDVI时间序列。通过使用递归搜索和填充算法(SFA)来编写NDViREF,用于数据可用性而没有空值。通过在具有相同条件的另一像素处使用线性回归的系数通过线性回归的系数恢复NDViREF中的空值。最后,预填充是在兴奋剂施用之前。通过使用东北印度和不丹地区的MODIS 16日常时间序列数据来证明所提出的方法,该方法被覆盖着频繁的季节性云。除了直接应用Hants,还与类似的方法进行比较,包括在辛亥俄比州施用之前通过逆距离加权(IDW)和立方样条来预先填充。发现拟合指示器,整体重建误差(矿石)和归一化噪声相关误差(NNRE)是最适合在时空比较中提出的方法。此外,以拟议的方法更好地恢复季节性地性特质NDVI时间序列。这种方法被结论是对汉斯的增强,这有助于提高NDVI重建质量,为全球频繁的季节性障碍物频繁的地区。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号