首页> 外文期刊>GIScience & remote sensing >Proof of concept of a novel cloud computing approach for object-based remote sensing data analysis and classification
【24h】

Proof of concept of a novel cloud computing approach for object-based remote sensing data analysis and classification

机译:基于对象的遥感数据分析和分类的新型云计算方法的概念证明

获取原文
获取原文并翻译 | 示例

摘要

Advances in the development of Earth observation data acquisition systems have led to the continuously growing production of remote sensing datasets, for which timely analysis has become a major challenge. In this context, distributed computing technology can provide support for efficiently handling large amounts of data. Moreover, the use of distributed computing techniques, once restricted by the availability of physical computer clusters, is currently widespread due to the increasing offer of cloud computing infrastructure services. In this work, we introduce a cloud computing approach for object-based image analysis and classification of arbitrarily large remote sensing datasets. The approach is an original combination of different distributed methods which enables exploiting machine learning methods in the creation of classification models, through the use of a web-based notebook system. A prototype of the proposed approach was implemented with the methods available in the InterCloud system integrated with the Apache Zeppelin notebook system, for collaborative data analysis and visualization. In this implementation, the Apache Zeppelin system provided the means for using the scikit-learn Python machine learning library in the design of a classification model. In this work we also evaluated the approach with an object-based image land-cover classification of a GeoEye-1 scene, using resources from a commercial cloud computing infrastructure service provided. The obtained results showed the effectiveness of the approach in efficiently handling a large data volume in a scalable way, in terms of the number of allocated computing resources.
机译:地球观测数据采集系统发展的进步导致遥感数据集的生产不断增长,为此,及时分析已成为一项主要挑战。在这种情况下,分布式计算技术可以为有效处理大量数据提供支持。此外,由于云计算基础设施服务的日益增加,一旦受到物理计算机集群可用性的限制,分布式计算技术的使用目前已广泛普及。在这项工作中,我们介绍了一种云计算方法,用于基于对象的图像分析和任意大型遥感数据集的分类。该方法是不同分布式方法的原始组合,通过使用基于Web的笔记本系统,可以在分类模型的创建中利用机器学习方法。利用与Apache Zeppelin笔记本系统集成的InterCloud系统中可用的方法,实现了所提出方法的原型,以进行协作数据分析和可视化。在此实现中,Apache Zeppelin系统提供了在分类模型设计中使用scikit-learn Python机器学习库的方法。在这项工作中,我们还使用提供的商业云计算基础架构服务中的资源,通过对GeoEye-1场景进行基于对象的图像土地覆盖分类来评估该方法。所获得的结果表明,根据分配的计算资源数量,该方法可有效地以可伸缩方式有效处理大量数据。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号